一般的トレーディングシステムを基にしたExpert Advisors と売買ロボット最適化の錬金術(パート3)
本稿では、もっともシンプルなトレーディングシステムのアルゴリズム実装の分析を続行し、バックテストの自動化を紹介します。初心者トレーダーや EA プログラマ―に有用です。
ニュース取引が簡単に(第1回):データベースの作成
ニュース取引は複雑で圧倒されるかもしれませんが、この記事ではニュースデータを入手する手順を説明し、さらに、MQL5経済指標カレンダーとその特徴についても学びます。
Rebuyのアルゴリズム:効率を上げるための数学モデル
この記事では、取引システムの効率をより深く理解するためにRebuyアルゴリズムを使用し、数学と論理を使用して取引効率を向上させる一般的な原則に着手し、どのような取引システムでも制約なく使用するという観点から、最も非標準的な、効率を高める方法を適用します。
予測による統計的裁定取引
統計的裁定取引について調べ、共和分で相関する銘柄をPythonで検索し、ピアソン係数の指標を作成し、PythonとONNX モデルで予測をおこなって統計的裁定取引を行うEAを作成します。
Bulls Powerによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標によって取引システムを設計する方法を学ぶ連載の新しい記事へようこそ。この新しい記事では、Bulls Power(ブルパワー )テクニカル指標によって取引システムを設計する方法を学びます。
MetaTrader 5をPostgreSQLに接続する方法
この記事では、MQL5コードをPostgresデータベースに接続するための4つの方法について説明し、そのうちの1つであるREST APIの開発環境をWindows Subsystem For Linux (WSL)を使用して設定するためのステップバイステップのチュートリアルを提供します。APIのデモアプリが、データを挿入してそれぞれのテーブルにクエリを実行するための対応MQL5コード、このデータを使用するためのデモエキスパートアドバイザー(EA)とともに提供されます。
DoEasyライブラリの時系列(第48部): 複数銘柄・複数期間指標バッファ
本稿では、指標バッファオブジェクトのクラスを改善して、複数銘柄モードで動作するようにします。これにより、カスタムプログラムで複数銘柄・複数期間指標を作成するための道が開かれます。複数銘柄・複数期間指標標準指標を作成するために、不足している機能を計算バッファオブジェクトに追加します。
MQL5とデータ処理パッケージの統合(第2回):機械学習と予測分析
本連載では、MQL5とデータ処理パッケージの統合について考察し、機械学習と予測分析の強力な組み合わせを深掘りします。MQL5と一般的な機械学習ライブラリをシームレスに接続することで、金融市場向けの高度な予測モデルを実現する方法を探ります。
データサイエンスと機械学習(第14回):コホネンマップを使って市場で自分の道を見つける
複雑で変化し続ける市場をナビゲートする、最先端の取引アプローチをお探しですか。人工ニューラルネットワークの革新的な形態であるコホネンマップは、市場データの隠れたパターンやトレンドを発見するのに役立ちます。この記事では、コホネンマップがどのように機能するのか、そして、より賢く、より効果的な取引戦略を開発するために、どのように活用できるのかを探ります。経験豊富なトレーダーも、これから取引を始める人も、このエキサイティングな新しいアプローチを見逃す手はありません。
2013 年第二四半期 MQL5マーケット 実績
1年半成功裏に実績を積み、MQL5 「マーケット」はトレーダーにとってトレーディング戦略およびテクニカルインディケータの最大のストアとなりました。そこでは世界中の開発者 350 名から提供される約 800 件のトレーディングアプリケーションが提供されています。100,000 件以上のトレーディングプログラムがすでにトレーダーにより購入され、MetaTrader 5 ターミナルにダウンロードされています。
MQL5.community 人名鑑
MQL5.com ウェブサイトはみなさんのことをとてもよく覚えています!何本のスレッドがすばらしい出来か、記事がどれほど人気か、「コードベース」のプログラムがどのくらいの頻度でダウンロードされるか。これは MQL5.comで記憶されていることのほんの小さな一部にしかすぎません。みなさんの実績はプロフィールで確認可能ですが、全体像はどうでしょうか?本稿では全 MQL5.community メンバーの実績概要を示します。
MQL5の圏論(第6回):単射的引き戻しと全射的押し出し
圏論は、数学の多様かつ拡大を続ける分野であり、最近になってMQL5コミュニティである程度取り上げられるようになりました。この連載では、その概念と原理のいくつかを探索して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
独自のLLMをEAに統合する(第4部):GPUを使った独自のLLMの訓練
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
リプレイシステムの開発—市場シミュレーション(第1回):最初の実験(I)
市場がしまっているときに研究したり、市場の状況をシミュレーションしたりできるシステムを作成してはどうでしょうか。ここで、このトピックを扱う新しい連載を開始します。
リプレイシステムの開発 — 市場シミュレーション(第4回):設定の調整(II)
システムとコントロールを作り続けましょう。サービスをコントロールする能力がなければ、システムを前進させ、改善することは難しくなります。
DoEasyライブラリのグラフィックス(第92部): 標準グラフィカルオブジェクトのメモリクラスオブジェクトプロパティの変更履歴
本稿では標準のグラフィカルオブジェクトメモリのクラスを作成して、プロパティが変更されたときにオブジェクトの状態を保存できるようにします。これにより、以前のグラフィカルオブジェクトの状態に戻ることができるようになります。
MQL5の高度な変数とデータ型
変数とデータ型は、MQL5プログラミングだけでなく、どのプログラミング言語でも非常に重要なトピックです。MQL5の変数とデータ型は、単純なものと高度なものに分類できます。単純なものについては前回の記事ですでに述べたので、今回は高度なものを特定し、それについて学ぶことにします。
Meta Trader5がもたらす新たな機会
Meta Trader4は世界中のトレーダーから好評を博し、これ以上に望むものはないように思われていました。高い処理速度、安定性、インディケータ記述の広大な可能性、エキスパートアドバイザー、情報提供型トレーディングシステム、そして100以上の異なるブローカーから選択できることにより-このターミナルは他に類を見ないほどに優れたものでした。しかし時は流れ、今や、Meta Trader4かMeta Trader5かの選択を迫られる時代となりました。本稿では、時代が求めるこの第5世代ターミナルの主な違いについて述べます。
DoEasyライブラリでのその他のクラス(第70部): チャットオブジェクトコレクショの機能拡張と自動更新
本稿では、チャートオブジェクトの機能を拡張し、チャートのナビゲーション、スクリーンショットの作成、チャートの保存と適用を行います。また、チャートオブジェクトのコレクション、それらのウィンドウ、およびその中の指標の自動更新を実装します。
ニューラルネットワークが簡単に(第58回):Decision Transformer (DT)
強化学習の手法を引き続き検討します。この記事では、一連の行動を構築するパラダイムでエージェントの方策を考慮する、少し異なるアルゴリズムに焦点を当てます。
PythonとMQL5でロボットを開発する(第1回):データ前処理
機械学習に基づく自動売買ロボットの開発の詳細なガイドです。連載第1回は、データと特徴量の収集と準備についてです。プロジェクトは、Pythonプログラミング言語とライブラリ、およびMetaTrader 5プラットフォームを使用して実装されます。
AD(蓄積/分散、Accumulation/Distribution)による取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標に基づいて取引システムを設計する方法を学ぶための連載の新しい記事へようこそ。今回は、AD(蓄積/分散、Accumulation/Distribution)という新しいテクニカル指標について学び、シンプルなAD取引戦略に基づいてMQL5取引システムを設計する方法を学びます。
適応型インジケーター
この記事では、適応型インジケーターを作成するためのいくつかの可能なアプローチを検討します。適応型インジケーターは、入力信号と出力信号の値の間のフィードバックの存在によって特徴付けられます。このフィードバックにより、インジケーターは金融時系列値の最適な処理に個別に適応できるようになります。
MQL5とデータ処理パッケージの統合(第1回):高度なデータ分析と統計処理
統合により、MQL5から生の財務データをJupyter Labのようなデータ処理パッケージにインポートし、統計テストを含む高度な分析をおこなうシームレスなワークフローが実現します。
知っておくべきMQL5ウィザードのテクニック(第39回):RSI (Relative Strength Index)
RSIは、モメンタムオシレーターとして人気があり、最近の価格変動のペースと大きさを測定し、証券価格の過大評価と過小評価の状況を評価します。スピードと大きさに関するこれらの洞察は、反転ポイントを定義する上で鍵となります。このオシレーターを別のカスタムシグナルクラスで動作させ、そのシグナルの特徴を調べてみましょう。まず、ボリンジャーバンドについてのまとめから始めます。
ディープニューラルネットワーク(その8)バギングアンサンブルの分類品質の向上
本稿では、バギングアンサンブルの分類品質を高めるために使用できる3つの方法を検討し、その効率を評価します。ELMニューラルネットワークのハイパーパラメータと後処理パラメータの最適化の効果が評価されます。
データサイエンスと機械学習(第25回):回帰型ニューラルネットワーク(RNN)を用いたFX時系列予測
回帰型ニューラルネットワーク(Recurrent Neural Network: RNN)は、過去の情報を活用して将来の出来事を予測することに優れています。その驚くべき予測能力は、さまざまな領域で応用され、大きな成功を収めています。この記事では、外為市場のトレンドを予測するためにRNNモデルを導入し、外為取引における予測精度を高める可能性を示します。
PythonとMQL5を使用した取引戦略の自動パラメータ最適化
取引戦略とパラメータを自己最適化するアルゴリズムには、いくつかの種類があります。これらのアルゴリズムは、過去と現在の市場データに基づいて取引戦略を自動的に改善するために使用されます。この記事では、そのうちの1つをpythonとMQL5の例で見ていきます。
MQL5オブジェクト指向プログラミング(OOP)について
開発者として、私たちは、特に異なる動作をするオブジェクトがある場合に、コードを重複せずに再利用可能で柔軟なソフトウェアを作成し開発する方法を学ぶ必要があります。これは、オブジェクト指向プログラミングのテクニックと原則を使うことでスムーズにおこなうことができます。この記事では、MQL5オブジェクト指向プログラミングの基本を紹介し、この重要なトピックの原則とプラクティスをソフトウェアでどのように使用できるかを説明します。
MQL5における行列とベクトル:活性化関数
ここでは、機械学習の一側面である活性化関数についてのみ説明します。人工ニューラルネットワークでは、ニューロンの活性化関数は、入力シグナルまたは入力シグナルのセットの値に基づいて出力シグナル値を計算します。その内幕に迫ります。
初心者からエキスパートへ:MQL5での共同デバッグ
問題解決は、MQL5でのプログラミングのような複雑なスキルを習得するための簡潔なルーチンを確立することができます。このアプローチでは、問題解決に集中しながら、同時にスキルアップを図ることができます。問題に取り組めば取り組むほど、高度な専門知識が脳に伝達されます。個人的には、デバッグはプログラミングをマスターするための最も効果的な方法だと思っています。今日は、コードクリーニングのプロセスを紹介し、乱雑なプログラムをクリーンで機能的なものに変えるための最善のテクニックについて解説します。この記事を読んで、貴重な洞察を発見してください。
モメンタムによるトレーディングシステムの設計方法を学ぶ
前回は、価格の方向性であるトレンドを見極めることの重要性について述べました。この記事では、最も重要な概念と指標の1つであるモメンタム指標を紹介します。このモメンタム指標に基づいたトレーディングシステムの設計方法を紹介します。
ビデオ:シンプルな自動取引 – MQL5でシンプルなエキスパートアドバイザーを作成する方法
私のコースの学生の大半は、MQL5を理解するのが本当に難しいと感じていました。これに加えて、彼らはいくつかのプロセスを自動化する簡単な方法を探していました。この記事に含まれる情報を読んで、今すぐMQL5のを使い始める方法を見つけてください。これまでに何らかの形のプログラミングをおこなったことがない場合でも、観察した前のイラストを理解できない場合でも.です。
行列ユーティリティ - 行列とベクトルの標準ライブラリの機能を拡張する
行列は大規模な数学的演算を効率的に処理できるため、機械学習アルゴリズムや一般的なコンピュータの基盤となっています。標準ライブラリは必要なものをすべて備えていますが、ユーティリティファイルでライブラリにはまだないいくつかの関数を導入して、拡張する方法を見てみましょう。
データサイエンスと機械学習(第15回):SVM、すべてのトレーダーのツールボックスの必須ツール
取引の未来を形作るサポートベクターマシン(SVM)の不可欠な役割をご覧ください。この包括的なガイドブックでは、SVMがどのように取引戦略を向上させ、意思決定を強化し、金融市場における新たな機会を解き放つことができるかを探求しています。実際のアプリケーション、ステップバイステップのチュートリアル、専門家の洞察でSVMの世界に飛び込みましょう。現代の複雑な取引をナビゲートするのに不可欠なツールを装備してください。SVMはすべてのトレーダーのツールボックスの必需品です。
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第4回):三角移動平均 — 指標シグナル
この記事の多通貨エキスパートアドバイザー(EA)は、1つの銘柄チャートからのみ複数の銘柄ペアの取引(注文を出す、注文を決済する、トレーリングストップロスとトレーリングプロフィットなどで注文を管理するなど)ができるEAまたは自動売買ロボットです。今回は、多時間枠または単一時間枠の「三角移動平均」という1つの指標のみを使用します。
StringFormat():レビューと既成の例
この記事では、PrintFormat()関数のレビューを続けます。StringFormat()を使った文字列の書式設定と、そのプログラムでのさらなる使用法について簡単に説明します。また、ターミナル操作ログに銘柄データを表示するためのテンプレートも作成します。この記事は、初心者にも経験豊富な開発者にも役立つでしょう。