知っておくべきMQL5ウィザードのテクニック(第07回):樹状図
分析や予測を目的としたデータの分類は、機械学習の中でも非常に多様な分野であり、数多くのアプローチや手法があります。この作品では、そのようなアプローチのひとつである「凝集型階層分類」を取り上げます。
Rebuyのアルゴリズム:多通貨取引シミュレーション
本稿では、多通貨の価格設定をシミュレートする数理モデルを作成し、前回理論計算から始めた取引効率を高めるメカニズム探求の一環として、分散原理の研究を完成させます。
Pythonを使用した深層学習GRUモデルとEAによるONNX、GRUとLSTMモデルの比較
Pythonを使用してGRU ONNXモデルを作成する深層学習のプロセス全体を説明し、最後に取引用に設計されたエキスパートアドバイザー(EA)の作成と、その後のGRUモデルとLSTNモデルの比較をおこないます。
ソフトウェア開発とMQL5におけるデザインパターン(第4回):振る舞いパターン2
デザインパターンには、生成デザインパターン、構造デザインパターン、振る舞いデザインパターンの3タイプがあることを説明しました。コードをクリーンにしながらオブジェクト間の相互作用の方法を設定するのに役立つ、残りの振る舞いタイプのパターンの説明を完成させます。
ニューラルネットワークの実験(第4回):テンプレート
この記事では、実験と非標準的な方法を使用して収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。ニューラルネットワークを取引に活用するための自給自足ツールとしてMetaTrader 5を使用します。簡単に説明します。
Candlestick Trend Constraintモデルの構築(第3回):使用中のトレンド変化の検出
この記事では、経済ニュースの発表、投資家の行動、さまざまな要因が市場のトレンド反転にどのような影響を与えるかを探ります。ビデオによる説明もあり、MQL5のコードをプログラムに組み込むことで、トレンドの反転を検出し、警告を発し、市場の状況に応じて適切な行動を取ることができます。これは、本連載の過去の記事に基づいています。
バックテスト結果を改善するための生のコードの最適化と調整
MQL5コードを強化するために、ロジックの最適化、計算の精緻化、実行時間の短縮をおこない、バックテストの精度を向上させましょう。パラメータの微調整、ループの最適化、非効率の排除によって、より高いパフォーマンスを実現します。
キャンバスベースのインジケーター:チャネル内を透明にする
この記事では、標準ライブラリのCCanvasクラスを使用して描画されるカスタムインジケーターを作成して、座標変換のチャートプロパティを確認する方法を紹介します。特に、2本の線の間の領域を透明にする必要があるインジケーターに取り組みます。
エキスパートアドバイザー(EA)に指標を追加するための既製のテンプレート(第1部):オシレーター
この記事では、オシレーターカテゴリから標準的な指標を検討します。パラメータの宣言と設定、指標の初期化と初期化解除、EAの指標バッファからのデータとシグナルの受信など、EAですぐに使用できるテンプレートを作成します。
データサイエンスとML(第42回):PythonでARIMAを用いた外国為替時系列予測、知っておくべきことすべて
ARIMAは自己回帰和分移動平均(Auto Regressive Integrated Moving Average)の略称で、強力な従来の時系列予測モデルです。このモデルは、時系列データ内の急上昇や変動を検出する機能により、次の値を正確に予測できます。この記事では、ARIMAが何であるか、どのように機能するか、市場での次の価格を高い精度で予測する際に何ができるかなどについて説明します。
DoEasy - コントロール(第2部):CPanelクラスでの作業
今回は、グラフィック要素の処理に関連するエラーを取り除き、CPanelコントロールの開発を継続する予定です。特に、すべてのパネルテキストオブジェクトにデフォルトで使用されるフォントのパラメータを設定するメソッドを実装します。
MQL5とPythonを使用したブローカーAPIとエキスパートアドバイザーの統合
この記事では、Pythonと連携したMQL5の実装について解説し、ブローカー関連の操作を自動化する方法を紹介します。VPS上にホストされて継続的に稼働するエキスパートアドバイザー(EA)が、あなたに代わって取引を実行すると想像してください。ある時点で、EAによる資金管理機能が非常に重要になります。具体的には、取引口座への残高補充や出金などの操作を含みます。本稿では、これらの機能の利点と実際の実装例を紹介し、資金管理を取引戦略にシームレスに統合する方法をお伝えします。どうぞご期待ください。
一からの取引エキスパートアドバイザーの開発(第30部):指標としてのCHART TRADE?
今日は再びChart Tradeを使用しますが、今回はチャート上に存在する場合と存在しない場合があるオンチャート指標になります。
データサイエンスと機械学習(第27回):MetaTrader 5取引ボットにおける畳み込みニューラルネットワーク(CNN)に価値はあるか?
畳み込みニューラルネットワーク(CNN)は、画像や映像のパターンを検出する能力に優れていることで有名で、さまざまな分野に応用されています。この記事では、金融市場の価値あるパターンを識別し、MetaTrader 5取引ボットのための効果的な取引シグナルを生成するCNNの可能性を探ります。このディープマシンラーニングの手法を、よりスマートな取引判断のためにどのように活用できるかを見てみましょう。
DoEasyライブラリでの価格(第65部): 板情報コレクションとMQL5.comシグナル操作クラス
本稿では、すべての銘柄の板情報コレクションクラスを作成し、シグナルオブジェクトクラスを作成することによってMQL5.comシグナルサービスを使用するための機能の開発を開始します。
DoEasy - コントロール(第27部):ProgressBar WinFormsオブジェクトの操作
この記事では、ProgressBarコントロールの開発を続けます。特に、プログレスバーと視覚効果を管理するための機能を作成します。
PythonとMQL5を使用して初めてのグラスボックスモデルを作る
機械学習モデルの解釈は難しく、このような高度なテクニックを使用して何らかの価値を得たいのであれば、モデルが予想から外れる理由を理解することが重要です。モデルの内部構造に対する包括的な洞察がなければ、モデルのパフォーマンスを低下させるバグを発見できないことがあります。予測できない機能のエンジニアリングに時間を浪費し、長期的にはモデルのパワーを十分に活用できない危険性があります。幸いなことに、モデルの内部で何が起こっているかを正確に見ることができる、洗練され、よく整備されたオールインワンソリューションがあります。
初心者からエキスパートへ:ローソク足のプログラミング
この記事では、MQL5プログラミングの第一歩を、完全な初心者でも理解できるように解説します。よく知られているローソク足パターンを、実際に機能するカスタムインジケーターへと変換する方法を紹介します。ローソク足パターンは、実際の価格変動を反映し、市場の転換を示唆するため、非常に有用です。チャートを目視で確認してパターンを探す手法ではミスや非効率が生じやすいため、この記事では、パターンを自動的に識別・ラベル付けしてくれるインジケーターを作成する方法を説明します。その過程で、インデックス(索引)、時系列、ATR(市場の変動性に応じた精度向上のため)などの重要な概念についても解説し、今後のプロジェクトで再利用可能なカスタムローソク足パターンライブラリの開発にも触れていきます。
モスクワ取引所(MOEX)におけるストップ注文を利用した取引所グリッド取引の自動化
本稿では、MQL5エキスパートアドバイザー(EA)に実装されたストップ指値注文に基づくグリッド取引についてモスクワ取引所(MOEX)で考察します。市場で取引する場合、最も単純な戦略の1つは、市場価格を「キャッチ」するように設計された注文のグリッドです。
MQL5入門(第12回):初心者のためのカスタムインジケーター作成ガイド
MQL5でカスタムインジケーターを構築する方法を学びます。プロジェクトベースのアプローチを採用します。この初心者向けガイドでは、インジケーターバッファ、プロパティ、トレンドの視覚化について解説し、段階的に学習を進めることができます。
データサイエンスとML(第37回):ローソク足パターンとAIを活用して市場をリードする
ローソク足パターンは、トレーダーが市場の心理を理解し、金融市場におけるトレンドを特定するのに役立ちます。これにより、より情報に基づいた取引判断が可能となり、より良い成果につながる可能性があります。本記事では、AIモデルとローソク足パターンを組み合わせて最適な取引パフォーマンスを実現する方法を探っていきます。
ティッカーテープパネルの作成:改良版
ティッカーテープパネルの基本バージョンを復活させるというアイデアはいかがでしょうか。まずおこなうのは、資産のロゴやその他の画像などの画像を追加できるようにパネルを変更して、ユーザーが表示された銘柄をすばやく簡単に識別できるようにすることです。
知っておくべきMQL5ウィザードのテクニック(第12回):ニュートン多項式
ニュートン多項式は、数点の集合から二次方程式を作るもので、時系列を見るには古風だが興味深いアプローチです。この記事では、このアプローチをトレーダーがどのような面で役立てることができるかを探るとともに、その限界についても触れてみたいと思います。
DoEasyライブラリの時系列(第56部):カスタム指標オブジェクト、コレクション内指標オブジェクトからのデータ取得
本稿では、EAで使用するためのカスタム指標オブジェクトの作成について検討します。ライブラリクラスを少し改善し、EAの指標オブジェクトからデータを取得するメソッドを追加しましょう。
ニューラルネットワークが簡単に(第20部):オートエンコーダ
教師なし学習アルゴリズムの研究を続けます。読者の中には、最近の記事とニューラルネットワークの話題の関連性について疑問を持つ人もいるかもしれません。この新しい記事では、ニューラルネットワークの研究に戻ります。
知っておくべきMQL5ウィザードのテクニック(第04回):線形判別分析
今日のトレーダーは哲学者であり、ほとんどの場合、新しいアイデアを探して試し、変更するか破棄するかを選択します。これは、かなりの労力を要する探索的プロセスです。この連載では、MQL5ウィザードがこの取り組みにおけるトレーダーの主力であるべきであることを示しています。
一からの取引エキスパートアドバイザーの開発(第13部):Times & Trade (II)
本日は、Times & Tradeシステムの第2部である市場分析を構築します。前回の「Times & Trade (I)」稿では、市場で実行された取引を可能な限り迅速に解釈するための指標を持つことを可能にする代替のチャート編成システムについて説明しました。
ニューラルネットワークの実験(第1回):幾何学の再検討
この記事では、実験と非標準的なアプローチを使用して、収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。
MQL5の圏論(第11回):グラフ
この記事は、MQL5での圏論の実装を考察する連載の続きです。ここでは、取引システムへのクローズアウト戦略を開発する際に、グラフ理論をモノイドやその他のデータ構造とどのように統合できるかを検討します。
MQL5の圏論(第15回):関手とグラフ
この記事はMQL5における圏論の実装に関する連載を続け、関手について見ていきますが、今回はグラフと集合の間の橋渡しとして関手を見ていきます。カレンダーデータを再検討します。ストラテジーテスターでの使用には限界がありますが、相関性の助けを借りて、ボラティリティを予測する際に関手を使用するケースを説明します。
独自のLLMをEAに総合する(第5部): LLMを使った取引戦略の開発とテスト(I) - 微調整
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整(ファインチューニング)し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
DoEasyライブラリのグラフィックス(第89部): 抽象標準グラフィカルオブジェクトのプログラミング基本機能
現在、ライブラリでは、一部のパラメータの削除や変更など、クライアントターミナルのチャート上の標準のグラフィカルオブジェクトを追跡できます。現時点では、カスタムプログラムから標準グラフィカルオブジェクトを作成する機能はありません。
古典的な戦略をPythonで再構築する:MAクロスオーバー
この記事では、古典的な移動平均クロスオーバー戦略を再検討し、その現在の有効性を評価します。開始以来の経過時間を考慮して、AI がこの伝統的な取引戦略にもたらす可能性のある機能強化について検討します。AI技術を取り入れることで、高度な予測能力を活用し、取引のエントリとエグジットのポイントを最適化し、さまざまな市場環境に適応し、従来のアプローチと比較して全体的なパフォーマンスを向上させる可能性があることを目指します。
SMAとEMAを使った自動最適化された利益確定と指標パラメータの例
この記事では、機械学習とテクニカル分析を組み合わせた、FX取引向けの高度なEAを紹介します。アップル株取引を中心に、適応的な最適化やリスク管理、複数の取引戦略を活用しています。バックテストでは、収益性が高い一方で、大きなドローダウンを伴う結果が得られており、さらなる改良の余地が示唆されています。
デマーカーによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標によって取引システムを設計する方法についての連載の新しい記事へようこそ。今回は、デマーカー(DeMarker)指標による取引システムの作り方を紹介します。
MQL5の圏論(第17回):関手とモノイド
関手を題材にしたシリーズの最終回となる今回は、圏としてのモノイドを再考します。この連載ですでに紹介したモノイドは、多層パーセプトロンとともに、ポジションサイジングの補助に使われます。
MLモデルとストラテジーテスターの統合(第3回):CSVファイルの管理(II)
この記事では、MQL5でCSVファイルを効率的に管理するクラスを作成するための完全ガイドを提供します。データを開き、読み書きし、変換するメソッドの実装を見ていきます。また、情報を保存しアクセスするためにこれらを使用する方法についても検討します。さらに、このようなクラスを使用する際の制限や最も重要な点についても説明します。MQL5でCSVファイルを処理する方法を学びたい人にとって、この記事は貴重なリソースとなるでしょう。