拡張MACD分析に基づいたトレーダーアシスタント
トレーダーアシスタントが、いかなるタイムフレームでの実際のトレーディングの最後の3つのバーにおいて、MACDステータスの拡張分析に基づいて、オープンポジションの判断を手伝います。バックテスティングにも使用できます。
取引のための組合せ論と確率論(第II部): ユニバーサルフラクタル
本稿では、フラクタルの研究を続け、すべての資料の要約に特に注意を払います。これを行うために、これまでの開発をすべて、取引での実用化に便利で理解しやすいコンパクトな形にまとめてみます。
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第3回):銘柄名のプレフィックスおよび/またはサフィックスと取引時間セッションを追加しました
数人のトレーダー仲間から、プレフィックスやサフィックスを持つ銘柄名を持つブローカーでこの多通貨EAを使用する方法、およびこの多通貨EAで取引タイムゾーンや取引タイムセッションを実装する方法についてメールやコメントをいただきました。
MQL5でパラボリックSARと単純移動平均(SMA)を使用した高速取引戦略アルゴリズムを実装する
この記事では、パラボリックSARと単純移動平均(SMA)インジケーターを活用し、応答性の高い取引戦略を構築する高速取引型エキスパートアドバイザー(EA)をMQL5で開発します。インジケーターの使用方法、シグナルの生成、テストおよび最適化プロセスなど、戦略の実装について詳しく解説します。
データサイエンスと機械学習(第03回):行列回帰
今回のモデルは行列によって作成されています。これにより柔軟性が得られ、コンピュータの計算限界内に留まる限り、5つの独立変数だけでなく多くの変数を処理できる強力なモデルを作成できます。この記事を面白く読めることは間違いありません。
単一チャート上の複数インジケータ(第05部):MetaTrader 5をRADシステムに変える(I)
プログラミングはできなくても創造性に富んだ素晴らしいアイデアを持っている人はたくさんいます。しかし、プログラミングの知識がないため、これらのアイデアを実行に移すことができないのです。MetaTrader5のプラットフォームそのものをIDEのように使って、Chart Tradeを作成する方法を一緒に見てみましょう。
ゲータ―オシレーター(Gator Oscillator)による取引システムの設計方法を学ぶ
人気のあるテクニカル指標に基づいて取引システムを設計する方法を学ぶ本連載の新しい記事では、ゲータ―オシレーターテクニカル指標を取り上げ、簡単な戦略を通じて取引システムを作成する方法について学びます。
ニューラルネットワークが簡単に(第43回):報酬関数なしでスキルを習得する
強化学習の問題は、報酬関数を定義する必要性にあります。それは複雑であったり、形式化するのが難しかったりします。この問題に対処するため、明確な報酬関数を持たずにスキルを学習する、活動ベースや環境ベースのアプローチが研究されています。
一般的トレーディングシステムを基にした Expert Advisors と売買ロボット最適化の錬金術(パート5)
本稿では、先行記事で説明したトレーディングシステムを改良する方法を提供します。本稿は、Expert Advisor のプログラミング経験がいくらかすでにお持ちのトレーダーの方々にとって興味深いものとなるでしょう。
MQL5における座標降下法を用いたエラスティックネット回帰
この記事では、過学習を最小化すると同時に、有用な予測因子と予後予測力の低い予測因子を自動的に分離するエラスティックネット回帰の実用的な実装を探求します。
ニューラルネットワークが簡単に(第94回):入力シーケンスの最適化
時系列を扱うときは、常にソースデータを履歴シーケンスで使用します。しかし、これが最善の選択肢なのでしょうか。入力データの順序を変更すると、訓練されたモデルの効率が向上するという意見があります。この記事では、入力シーケンスを最適化する方法の1つを紹介します。
プロフィット引き出しモデル構築のためのTesterWithdrawal() 関数の使用
本稿は処理中に資産の特定部分の引き出しをするトレードシステムにおけるリスク見積をするためのTesterWithDrawal()関数使用について述べていきます。また、ストラテジーテスタにおける資産の引き出し計算のアルゴリズムへのこの関数の影響についても述べます。この関数はExpert Advisorsのパラメータ最適化に有用です。
多通貨エキスパートアドバイザーの開発(第3回):アーキテクチャの改訂
複数の戦略が並行して動作する多通貨EAの開発はすでにある程度進んでいます。蓄積された経験を考慮し、先に進みすぎる前に、ソリューションのアーキテクチャを見直し、改善を試みましょう。
有用なテクノロジーカクテルでYour MQL5 顧客を驚嘆させる!
MQL5 はプログラマーに関数の完全セットとオブジェクト指向API を提供します。それらのお陰でプログラマーは MetaTrader 環境内で願うことを行うことができるのです。ただ「ウェブテクノロジー」は今日ひじょに特殊なことをしてなにか違ったもので顧客を驚かせる必要があったり、ただ MT5 「標準ライブラリ」の特定箇所をマスターする十分な時間がないなんらかの状況で救助にきてくれる極端に多才なツールです。今回の例題によりご自身の開発時間管理の仕方と同時にすばらしいテクノロジーカクテルを作成する方法を実用例をご紹介します。
母集団最適化アルゴリズム:蟻コロニー最適化(ACO)
今回は、蟻コロニー最適化アルゴリズムについて解析します。このアルゴリズムは非常に興味深く、複雑です。この記事では、新しいタイプのACOの作成を試みます。
リニアなトレーディングシステムを指数に高める
本稿では MQL5 プログラマーの中級者にリニアなトレーディングシステム(固定ロット)からいわゆる指数の技術を簡単に実装することでより収益を上げる方法をお伝えします。これは結果として生じる資金曲線の成長が幾何学的または指数関数で放物線の形を取ります。特にラルフ・ビンス氏によって開発された実用的な「固定比率」のポジションサイジングの MQL5 のバリアントを実装します。
ニューラルネットワークが簡単に(第22部):回帰モデルの教師なし学習
モデルと教師なし学習アルゴリズムの研究を続けます。今回は、回帰モデルの学習に適用した場合のオートエンコーダの特徴について提案します。
機械学習や取引におけるメタモデル:取引注文のオリジナルタイミング
機械学習におけるメタモデル:人間がほとんど介在しない取引システムの自動作成 - いつ、どのように取引をおこなうかはモデルが自ら決定します。
ニューラルネットワークが簡単に(第21部):変分オートエンコーダ(Variational autoencoder、VAE)
前回の記事で、オートエンコーダアルゴリズムについて学びました。他のアルゴリズム同様、このアルゴリズムには長所と短所があります。元の実装では、オートエンコーダは、訓練標本からオブジェクトを可能な限り分離するために使用されます。今回はその短所への対処法についてお話します。
取引におけるトレーリングストップ
この記事では、取引でのトレーリングストップの使い方について説明します。トレーリングストップがどの程度有用で効果的なのか、どのように利用できるのかを評価します。トレーリングストップの効率は、価格のボラティリティと損切りレベルの選択に大きく左右されます。損切りを設定するには、さまざまなアプローチを用いることができます。
チャート上のインタラクティブなコントロールを備えたインジケーター
この記事は、インジケーターインターフェイスに関する新しい視点を提供します。利便性を重視していきます。何年にもわたって数十の異なる取引戦略を試し、数百の異なるインジケーターをテストしてきた結果、この記事で共有したいいくつかの結論に達しました。
ケルトナーチャネル取引システムの構築とテスト
この記事では、金融市場において非常に重要な概念であるボラティリティを利用した取引システムを紹介します。ケルトナーチャネル指標を理解し、それをどのようにコードし、どのように簡単な取引戦略に基づいて取引システムを作成し、様々な資産でテストすることができるかを理解した上で、ケルトナーチャネル指標に基づく取引システムを提供します。
われわれはいかにして MetaTrader シグナルサービスとソーシャルトレーディングを発展させたのでしょうか
われわれはシグナルサービスを強化し、メカニズムを改良し、新しい関数を追加し、欠陥を修正し続けています。2012年の MetaTrader シグナルサービスと現在の MetaTrader シグナルサービスはまったく異なる2つのサービスのようなものです。現在、特定バージョンの MetaTrader クライアントターミナルをサポートするサーバーのネットワークで構成される仮想ホスティングクラウドサービスを導入中です。
ボリンジャーバンドを活用したピラニア戦略に基づくMQL5エキスパートアドバイザーの作成
この記事では、ボリンジャーバンドを利用したピラニア戦略に基づいてMQL5でエキスパートアドバイザー(EA)を作成し、取引の有効性を高めます。この戦略の重要な原則、コーディングの実装、テストと最適化の方法について説明します。この知識によって、取引シナリオにEAを効果的に導入することが可能になります。
ニューラルネットワークが簡単に(第18部):アソシエーションルール
この連載の続きとして、教師なし学習の手法の中で、もう1つのタイプの問題であるアソシエーションルールのマイニングについて考えてみましょう。この問題タイプは、小売業、特にスーパーマーケットで、市場の分類を分析するために最初に使用されました。今回は、このようなアルゴリズムの取引への応用についてお話します。
MetaTrader 5用のMQTTクライアントの開発:TDDアプローチ(第4回)
この記事は、MQTTプロトコルのネイティブMQL5クライアントの開発ステップを説明する連載の第4回です。このセクションでは、MQTT v5.0のプロパティとは何か、そのセマンティクス、いくつかのプロパティの読み方について説明し、プロトコルを拡張するためにプロパティをどのように使用できるかの簡単な例を示します。
初心者からプロまでMQL5をマスターする(第3回):複雑なデータ型とインクルードファイル
これはMQL5プログラミングの主な側面を説明する連載の第3回目です。この記事では、前回の記事で触れなかった複雑なデータ型について説明します。具体的には、構造体、共用体、クラス、および「関数」データ型を扱います。また、#includeプリプロセッサディレクティブを使ってプログラムにモジュール性を加える方法についても解説します。
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第5回): ケルトナーチャネルのボリンジャーバンド—指標シグナル
この記事の多通貨エキスパートアドバイザー(EA)は、1つの銘柄チャートからのみ複数の銘柄ペアの取引(注文を出す、注文を決済する、トレーリングストップロスとトレーリングプロフィットなどで注文を管理するなど)ができるEAまたは自動売買ロボットです。この記事では、2つの指標、この場合はケルトナーチャネルのボリンジャーバンド®からのシグナルを使用します。
MQL5でゾーン回復マーチンゲール戦略を開発する
この記事では、ゾーン回復取引アルゴリズムに基づくエキスパートアドバイザー(EA)の作成に向けて実施すべきステップについて、詳細な観点から論じています。これは、アルゴリズムトレーダーの時間を節約するシステムの自動化に役立ちます。
RSS フィードによるトレードシグナルの送信
みなさんのコミュニティのメンバーと今すぐコミュニケーションをする有名な方法である RSS FEEDS として、トレードシグナルを送信する方法は私のアイデアです。
DoEasyライブラリの時系列(第45部): 複数期間指標バッファ
本稿では、複数期間モードと複数銘柄モードで使用する指標バッファオブジェクトおよびコレクションクラスの改善を始めます。現在の銘柄チャートの任意の時間枠からデータを受信して表示するためのバッファオブジェクトの使用を検討するつもりです。
DoEasyライブラリの時系列(第47部): 複数銘柄・複数期間標準指標
この記事では、標準指標を操作する方法の開発を開始します。これにより、最終的には、ライブラリクラスに基づいて複数銘柄の複数期間の標準指標を作成できるようになります。さらに、「スキップされたバー」イベントを時系列クラスに追加し、ライブラリ準備関数をCEngineクラスに移動することで、メインプログラムコードからの過度の負荷を排除します。
DoEasyライブラリでのその他のクラス(第69部): チャットオブジェクトコレクションクラス
本稿からチャートオブジェクトコレクションクラスの開発を開始します。このクラスでは、サブウィンドウと指標とともにチャートオブジェクトのコレクションリストを保存し、選択したチャートとそのサブウィンドウ、または複数のチャートのリストを一度に操作する機能を提供します。
流動性狩り取引戦略
流動性狩り(Liquidity Grab)取引戦略は、市場における機関投資家の行動を特定し、それを活用することを目指すSmart Money Concepts(SMC)の重要な要素です。これには、サポートゾーンやレジスタンスゾーンなどの流動性の高い領域をターゲットにすることが含まれます。市場がトレンドを再開する前に、大量の注文によって一時的な価格変動が引き起こされます。この記事では、流動性狩りの概念を詳しく説明し、MQL5による流動性狩り取引戦略エキスパートアドバイザー(EA)の開発プロセスの概要を紹介します。
アリゲーターによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標に基づいて取引システムを設計する方法についての連載は今回で完結します。アリゲーター指標を基にした取引システムの作り方を学びます。
独自のLLMをEAに統合する(第1部):ハードウェアと環境の導入
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
MQL5入門(第11回):MQL5の組み込みインジケーターの操作に関する初心者向けガイド(II)
RSI、MA、ストキャスティクスなどの複数のインジケーターを使用してMQL5でエキスパートアドバイザー(EA)を開発し、隠れた強気および弱気のダイバージェンスを検出する方法を学びます。教育目的で、詳細な例および完全にコメントされたソースコードを用いて、効果的なリスク管理を実装し、取引を自動化する方法をご紹介します。