
離散ハートレー変換
この記事では、スペクトル分析と信号処理の方法の1つである離散ハートレー変換について説明します。信号のフィルタリング、スペクトルの分析などが可能になります。DHTの能力は離散フーリエ変換の能力に劣りません。ただし、DFTとは異なり、DHTは実数のみを使用するため、実際の実装がより便利であり、その適用結果はより視覚的です。


DoEasyライブラリでのその他のクラス(第69部): チャットオブジェクトコレクションクラス
本稿からチャートオブジェクトコレクションクラスの開発を開始します。このクラスでは、サブウィンドウと指標とともにチャートオブジェクトのコレクションリストを保存し、選択したチャートとそのサブウィンドウ、または複数のチャートのリストを一度に操作する機能を提供します。

多通貨エキスパートアドバイザーの開発(第3回):アーキテクチャの改訂
複数の戦略が並行して動作する多通貨EAの開発はすでにある程度進んでいます。蓄積された経験を考慮し、先に進みすぎる前に、ソリューションのアーキテクチャを見直し、改善を試みましょう。


テスターにおける再クオートのモデル化と Expert Advisor 安定性解析
再クオートは多くの Expert Advisors にとって災難です。とりわけトレードへのエンター/エグジット条件の感度が高い場合は。本稿では再クオートについての EA 安定性を確認する方法を提供します。


トレーダミネーター 3:売買ロボットの台頭
記事 "Dr. Tradelove..." で Expert Advisorを作成しました。それは選択済みのトレーディングシステムのパラメータを自立的に最適化するものです。それ以上に EAにある一つのトレーディングシステムのパラメータだけを最適化するのではなく、複数あるトレーディングシステムから最良のものを選ぶExpert Advisorを作成しようと決めました。それがどうなったか見ていきます。

標準偏差による取引システムの設計方法を学ぶ
これは、MetaTrader 5取引プラットフォームで最も人気のあるテクニカル指標による取引システムの設計方法に関する連載の新しい記事です。この新しい記事では、標準偏差指標による取引システムの設計方法を学びます。


2013 年第三四半期 MetaTrader AppStore 実績
また四半期が経過したところで、 MetaTrader AppStore の実績を集計することにしました。MetaTrader AppStore は MetaTrader の売買ロボットおよびテクニカルインディケータの最大ストアです。報告対象四半期の終わりまでに「マーケット」には 500 人以上の開発者が 1,200 以上のプロダクツを出しました。

自動で動くEAを作る(第15回):自動化(VII)
自動化に関するこの連載を完結させるために、前回に引き続きトピックについて説明しましょう。EAを時計仕掛けのように動かすために、すべてがどのように組み合わされるかを見ていきます。


Connecting NeuroSolutions Neuronets
ニューロネットの作成に加え、NeuroSolutions ソフトウェアスウィートによりそれらを DLLとしてエクスポートすることが可能となります。本稿では、ニューロネット作成とDLL生成とそれを MetaTrader 5でのトレーディングのためExpert Advisor に連携する手順について述べています。


MQL5 クックブック:オーバーフィットの影響低減とクオート不足への対処
どのようなトレーディング戦略を使っていようと、将来の収益を確保するためどのパラメータを選択すべきかという疑問は常にあるものです。本稿は同時に複数のシンボルパラメータを最適化する機能を備えたExpert Advisor 例を提供します。この方法はパラメータのオーバーフィットによる影響を軽減し、1個のシンボルからのデータが調査に十分でない場合に対処するものです。

チャート上のインタラクティブなコントロールを備えたインジケーター
この記事は、インジケーターインターフェイスに関する新しい視点を提供します。利便性を重視していきます。何年にもわたって数十の異なる取引戦略を試し、数百の異なるインジケーターをテストしてきた結果、この記事で共有したいいくつかの結論に達しました。

データサイエンスと機械学習(第03回):行列回帰
今回のモデルは行列によって作成されています。これにより柔軟性が得られ、コンピュータの計算限界内に留まる限り、5つの独立変数だけでなく多くの変数を処理できる強力なモデルを作成できます。この記事を面白く読めることは間違いありません。

データサイエンスと機械学習(第11回):単純ベイズ、取引における確率論
確率を利用した取引は綱渡りのようなもので、正確さとバランス、そしてリスクに対する鋭い理解が必要です。取引の世界では、確率がすべてです。確率は、成功と失敗、利益と損失の違いになります。確率の力を活用することで、トレーダーは十分な情報に基づいた意思決定をおこない、リスクを効果的に管理し、経済的目標を達成することができます。つまり、経験豊富な投資家であれ、初心者のトレーダーであれ、確率を理解することは、取引の可能性を引き出す鍵になるのです。この記事では、確率を利用したエキサイティングな取引の世界を探求し、取引ゲームを次のレベルに引き上げる方法を紹介します。

アプリケーションを使用してMQL5の関数を理解する
関数はどのプログラミング言語においても重要なものです。関数は、開発者が同じことを繰り返さないことを意味するDRY (Do not Repeat Yourself)の概念を適用するのに役立つなどの多くのメリットを提供します。この記事では、関数に関する詳細情報と、物事を複雑にすることなく取引システムを強化するために、あらゆるシステムで使用または呼び出しできる簡単なアプリケーションを作成して、MQL5で独自の関数を作成する方法について説明します。

データサイエンスと機械学習(第26回):時系列予測における究極の戦い - LSTM対GRUニューラルネットワーク
前回の記事では、データの長期的な依存関係をうまく捉えられないにもかかわらず、利益を上げる戦略を構築できる単純RNNについて説明しました。この記事では、LSTM (Long-Short Term Memory)とGRU (Gated Recurrent Unit)の両方について説明します。この2つは、単純RNNの欠点を克服し、それを凌駕するために紹介されました。


誤った考え、パート2統計は、偽りの科学か、暴落するなくてはならない歴史です。
統計的なメソッドに客観的な現実、つまり金融上の出来事に適用とする試みは、不十分なデータや、確率分布やプロセスの非定常性に直面し、虚しく失敗してしまっています。この記事では、そのような金融上の出来事ではなく、主観的な意見を記述し、トレーダーがどのようにこれらを防ごうとしたか、トレーダーシステムについて記述します。トレーディング結果の統計的な規則性の抽出は、むしろ大変面白い作業です。時折、このプロセスのそのモデルに関する結論が導かれ、これらがトレーディングシステムに適用されます。


Expert Advisor動作中のバランス曲線勾配調整
トレードシステムのルールを見つけ、それをExpert Advisorにプログラムするのが仕事の半分です。Expert Advisorはトレーディング結果を集積するので、いくらかの処理を修正する必要があります。本項では、バランス曲線の勾配測定のフィードバックを作成することで、Expert Advisorのパフォーマンスを向上させる方法の一つについて述べます。


DoEasyライブラリのグラフィックス(第86部): グラフィカルオブジェクトコレクション - プロパティ変更の管理
本稿では、ライブラリ内のグラフィカルオブジェクトのプロパティ値の変更の追跡とともに、削除と名前変更を検討します。


トレーダーは開発者によるサービスを必要とするのでしょうか?
アルゴリズムによるトレードが人気になり求められ、珍しいアルゴリズムや変わった作業への需要につながりました。ある程度、そのような複雑なアプリケーションは、Code BaseやMarketにて取得できます。トレーダーは、これらのアプリケーションに数クリックでアクセスできますが、これらは完全に彼らの要求を満たすことができないこともあります。その場合、トレーダーは、MQL5 Freelanceセクションにて望ましいアプリケーションを作成できる開発者を探し、注文を行います。

ニューラルネットワークが簡単に(第21部):変分オートエンコーダ(Variational autoencoder、VAE)
前回の記事で、オートエンコーダアルゴリズムについて学びました。他のアルゴリズム同様、このアルゴリズムには長所と短所があります。元の実装では、オートエンコーダは、訓練標本からオブジェクトを可能な限り分離するために使用されます。今回はその短所への対処法についてお話します。

オーサムオシレーター(Awesome Oscillator)による取引システムの設計方法を学ぶ
連載の今回の新しい記事では、私たちの取引に役立ちそうな新しいテクニカルツールについてご紹介します。これは、オーサムオシレーター(Awesome Oscillator、AO)という指標です。この指標を使用した取引システムの設計方法を学びます。


グラフィカル ライン リクエストのメタ言語トレーディングと適しているトレーディング学習
本稿では、従来のテクニカル分析と互換性のある簡単で解りやすいグラフィカル トレーディングリクエスト言語について説明します。添付の G ターミナルは取引結果のグラフィカル分析に使用される半自動 Expert Advisor です。初心者トレーダーの独学と訓練に適しています。


グラフィカルインタフェースX:レンダーテーブルの新機能(ビルド9)
今日までは、ライブラリの最も高度なテーブルはCTableでした。このテーブルは、OBJ_EDIT型のエディットボックスから組み立てられており、さらなる開発は難しいです。したがって、機能の最大化においては、ライブラリ開発の現段階を考慮しても、CCanvasTable型のレンダーテーブルを開発する方が賢明です。その現バージョンはまったく使えない状態ですが、この記事から始めて状況を改善していきましょう。


MQL5の電子テーブル
本稿では、第一ディメンションに異なるタイプのデータを含む動的二次元配列クラスについて述べていきます。テーブル形式でデータを格納すると、整理の幅広い問題を解決し、異なるタイプの広範囲におよぶ情報を格納および処理するのに好都合です。テーブルに連携する機能性を実装するクラスのソースコードは本稿に添付があります。


マーケット価格予測に対する汎用回帰モデル(第2部): 自然、技術、社会の過渡関数
本稿は前稿からの論理的続編で、最初の記事で出された結論を確認する事実にハイライトを当てています。これらの事実は、その出版後10年以内に明らかになったもので、マーケット価格変化のパターンを説明する3つの検出された動的過渡関数を中心としています。

データサイエンスと機械学習(第28回):AIを使ってEURUSDの複数の先物を予測する
多くの人工知能モデルでは単一の将来値を予測することが一般的ですが、この記事では、機械学習モデルを用いて複数の将来値を予測するという強力な手法について掘り下げていきます。このアプローチは「多段階予測」として知られ、明日の終値だけでなく、明後日以降の値も予測することが可能です。多段階予測をマスターすることで、トレーダーやデータサイエンティストはより深い洞察を得ることができ、情報に基づいた意思決定を行うことで予測能力と戦略立案を大幅に強化することができます。

知っておくべきMQL5ウィザードのテクニック(第44回):ATR (Average True Range)テクニカル指標
ATRオシレーターは、特に外国為替市場において、ボラティリティの代理として機能する非常に人気のあるインジケーターです。これは、特にボリュームデータが不足している市場で広く活用されています。以前のインジケーターと同様に、パターンに基づいて分析をおこない、MQL5ウィザードライブラリのクラスとアセンブリを活用して、戦略およびテストレポートを共有します。


戦略ビルダー機能の拡張
前の2つの記事では、さまざまなデータ型へのメリルパターンの適用について説明し、提示されたアイデアをテストするためのアプリケーションを開発しました。本稿では、引き続き戦略ビルダーで作業し、その効率を改善し、新しい機能を実装します。

プロのプログラマーからのヒント(第III部): ロギングSeqログ収集および分析システムへの接続
エキスパートログに出力されるメッセージを統合および構造化するためのLoggerクラスの実装。Seqログ収集および分析システムへの接続。オンラインでのログメッセージの監視。

独自のLLMをEAに統合する(第1部):ハードウェアと環境の導入
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。


一般的トレーディングシステムを基にしたExpert Advisors と売買ロボット最適化の錬金術(パート3)
本稿では、もっともシンプルなトレーディングシステムのアルゴリズム実装の分析を続行し、バックテストの自動化を紹介します。初心者トレーダーや EA プログラマ―に有用です。

DoEasy - コントロール(第31部):ScrollBarコントロールのコンテンツのスクロール
この記事では、水平スクロールバーのボタンを使用してコンテナのコンテンツをスクロールする機能を実装します。

ボリンジャーバンドを活用したピラニア戦略に基づくMQL5エキスパートアドバイザーの作成
この記事では、ボリンジャーバンドを利用したピラニア戦略に基づいてMQL5でエキスパートアドバイザー(EA)を作成し、取引の有効性を高めます。この戦略の重要な原則、コーディングの実装、テストと最適化の方法について説明します。この知識によって、取引シナリオにEAを効果的に導入することが可能になります。


最後の改革
トレーディングターミナルを見てください。価格の提示はどのような意味に見えますか?バー、ろうそく足、罫線私たちは価格からしか利益を得ない一方、時間と価格の両方を追求しています。市場を分析する際に、価格のみに注意を向けるだけで良いのでしょうか?この記事は、(「3目並べ」)ポイント・フィギュアチャート作成のためのスクリプトとアルゴリズムを提唱します。記されている推奨にて、記載されている実用的な使用方法の様々な価格パターンを考察していきます。

ニューラルネットワークの実験(第6回):価格予測のための自給自足ツールとしてのパーセプトロン
この記事では、パーセプトロンを自給自足の価格予測ツールとして使用する例として、一般的な概念と最もシンプルな既製のエキスパートアドバイザー(EA)を紹介し、その最適化の結果について説明します。

取引トランザクション:リクエストとレスポンスの構造体、説明、ロギング
この記事では、取引リクエストの構造体、すなわち、リクエストの作成、サーバーに送信する前の事前検証、取引リクエストに対するサーバーの応答、および取引トランザクションの構造体の取り扱いについて検討します。取引注文をサーバーに送信するためのシンプルで便利な関数を作成し、すべての議論された内容に基づいて、取引トランザクションを通知するEAを作成します。

ニューラルネットワークが簡単に(第14部):データクラスタリング
前回の記事を公開してから1年以上が経過しました。アイデアを修正して新しいアプローチを開発するには、これはかなりの時間です。この新しい記事では、以前に使用された教師あり学習法から逸れようと思います。今回は、教師なし学習アルゴリズムについて説明します。特に、クラスタリングアルゴリズムの1つであるk-meansについて検討していきます。