

より優れたプログラマー(第06部): 効果的なコーディングにつながる9つの習慣
効果的なコーディングにつながるのはコードを書くことだけではありません。経験を通して見つけた、効果的なコーディングにつながる特定の習慣があります。この記事では、そのいくつかについて詳しく説明します。これは、複雑なアルゴリズムをより手間をかけずに作成する能力を向上させたいすべてのプログラマーにとって必読の記事です。

ニューラルネットワークが簡単に(第27部):DQN (Deep Q-Learning)
強化学習の研究を続けます。今回は、「Deep Q-Learning」という手法に触れてみましょう。この手法を用いることで、DeepMindチームはアタリ社のコンピューターゲームのプレイで人間を凌駕するモデルを作成することができました。取引上の問題を解決するための技術の可能性を評価するのに役立つと思います。

VIDYAによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標によって取引システムを設計する方法を学ぶ連載の新しい記事へようこそ。この新しい記事では、新しいテクニカルツールについて学び、VIDYA(Variable Index Dynamic Average、可変インデックス動的平均)テクニカル指標によって取引システムを設計する方法を学びます。

ニューラルネットワークが簡単に(第43回):報酬関数なしでスキルを習得する
強化学習の問題は、報酬関数を定義する必要性にあります。それは複雑であったり、形式化するのが難しかったりします。この問題に対処するため、明確な報酬関数を持たずにスキルを学習する、活動ベースや環境ベースのアプローチが研究されています。


トリコロールインディケータとインディケータを書くことを最大限シンプル化するいくつかの機会
本稿では、ビジュアルトレーディングのためにインディケータの情報値を増やすことの意味についていくらか説明します。私はインディケータを構築するために別のタイムフレームからのデータを使用するトリコロールインディケータの実行を分析してし、記事"Effective Averaging Algorithms with Minimal Lag: Use in Indicators"で述べられているインディケータのライブラリについても詳しく説明します。

独自のLLMをEAに統合する(第2部):環境展開例
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。

MQL5における座標降下法を用いたエラスティックネット回帰
この記事では、過学習を最小化すると同時に、有用な予測因子と予後予測力の低い予測因子を自動的に分離するエラスティックネット回帰の実用的な実装を探求します。

float16およびfloat8形式のONNXモデルを扱う
機械学習モデルの表現に使用されるデータ形式は、その有効性に決定的な役割を果たします。近年、深層学習モデルを扱うために特別に設計された新しい型のデータがいくつか登場しています。この記事では、現代のモデルで広く採用されるようになった2つの新しいデータ形式に焦点を当てます。

単一チャート上の複数インジケータ(第05部):MetaTrader 5をRADシステムに変える(I)
プログラミングはできなくても創造性に富んだ素晴らしいアイデアを持っている人はたくさんいます。しかし、プログラミングの知識がないため、これらのアイデアを実行に移すことができないのです。MetaTrader5のプラットフォームそのものをIDEのように使って、Chart Tradeを作成する方法を一緒に見てみましょう。


有用なテクノロジーカクテルでYour MQL5 顧客を驚嘆させる!
MQL5 はプログラマーに関数の完全セットとオブジェクト指向API を提供します。それらのお陰でプログラマーは MetaTrader 環境内で願うことを行うことができるのです。ただ「ウェブテクノロジー」は今日ひじょに特殊なことをしてなにか違ったもので顧客を驚かせる必要があったり、ただ MT5 「標準ライブラリ」の特定箇所をマスターする十分な時間がないなんらかの状況で救助にきてくれる極端に多才なツールです。今回の例題によりご自身の開発時間管理の仕方と同時にすばらしいテクノロジーカクテルを作成する方法を実用例をご紹介します。


リニアなトレーディングシステムを指数に高める
本稿では MQL5 プログラマーの中級者にリニアなトレーディングシステム(固定ロット)からいわゆる指数の技術を簡単に実装することでより収益を上げる方法をお伝えします。これは結果として生じる資金曲線の成長が幾何学的または指数関数で放物線の形を取ります。特にラルフ・ビンス氏によって開発された実用的な「固定比率」のポジションサイジングの MQL5 のバリアントを実装します。

単一チャート上の複数インジケータ(第01部): 概念
今日は、チャート上の個別の領域を占有せずに1つのチャートで同時に実行される複数のインジケータを追加する方法を学習します。多くのトレーダーは、一度に複数のインジケータ(例: RSI、STOCASTIC、MACD、ADX)を監視する、または場合によってはインデックスを構成している異なるアセットで監視することによって、自信を高めることができます。

PrintFormat()を調べてすぐ使える例を適用する
この記事は、初心者にも経験豊富な開発者にも役立つでしょう。PrintFormat()関数について調べ、文字列フォーマットの例を分析し、ターミナルのログに様々な情報を表示するためのテンプレートを書きます。


RSS フィードによるトレードシグナルの送信
みなさんのコミュニティのメンバーと今すぐコミュニケーションをする有名な方法である RSS FEEDS として、トレードシグナルを送信する方法は私のアイデアです。


プロフィット引き出しモデル構築のためのTesterWithdrawal() 関数の使用
本稿は処理中に資産の特定部分の引き出しをするトレードシステムにおけるリスク見積をするためのTesterWithDrawal()関数使用について述べていきます。また、ストラテジーテスタにおける資産の引き出し計算のアルゴリズムへのこの関数の影響についても述べます。この関数はExpert Advisorsのパラメータ最適化に有用です。

時系列の周波数領域表現:パワースペクトル
この記事では、周波数領域での時系列分析に関連する方法について説明します。予測モデルを構築する際に、時系列のパワースペクトルを調べることの有用性を強調します。この記事では、離散フーリエ変換(dft)を用いて時系列を周波数領域で分析することで得られる有用な視点のいくつかを説明します。

ニューラルネットワークが簡単に(第94回):入力シーケンスの最適化
時系列を扱うときは、常にソースデータを履歴シーケンスで使用します。しかし、これが最善の選択肢なのでしょうか。入力データの順序を変更すると、訓練されたモデルの効率が向上するという意見があります。この記事では、入力シーケンスを最適化する方法の1つを紹介します。


われわれはいかにして MetaTrader シグナルサービスとソーシャルトレーディングを発展させたのでしょうか
われわれはシグナルサービスを強化し、メカニズムを改良し、新しい関数を追加し、欠陥を修正し続けています。2012年の MetaTrader シグナルサービスと現在の MetaTrader シグナルサービスはまったく異なる2つのサービスのようなものです。現在、特定バージョンの MetaTrader クライアントターミナルをサポートするサーバーのネットワークで構成される仮想ホスティングクラウドサービスを導入中です。


取引のための組合せ論と確率論(第II部): ユニバーサルフラクタル
本稿では、フラクタルの研究を続け、すべての資料の要約に特に注意を払います。これを行うために、これまでの開発をすべて、取引での実用化に便利で理解しやすいコンパクトな形にまとめてみます。


DoEasyライブラリの時系列(第45部): 複数期間指標バッファ
本稿では、複数期間モードと複数銘柄モードで使用する指標バッファオブジェクトおよびコレクションクラスの改善を始めます。現在の銘柄チャートの任意の時間枠からデータを受信して表示するためのバッファオブジェクトの使用を検討するつもりです。

MQL5を使用したカスタムTrue Strength Index指標の作成方法
カスタム指標の作成方法についてご紹介します。今回はTSI (True Strength Index)を扱い、それに基づいてエキスパートアドバイザー(EA)を作成することにします。


MQL5 Market 一周年
MQL5 Marketがサービスを開始して、1年が経過しました。新しいサービスをMetaTrader5プラットフォームにおけるテクニカルインジケーターやトレーディングシステムの巨大ストアに変える困難な一年でした。


DoEasyライブラリの時系列(第47部): 複数銘柄・複数期間標準指標
この記事では、標準指標を操作する方法の開発を開始します。これにより、最終的には、ライブラリクラスに基づいて複数銘柄の複数期間の標準指標を作成できるようになります。さらに、「スキップされたバー」イベントを時系列クラスに追加し、ライブラリ準備関数をCEngineクラスに移動することで、メインプログラムコードからの過度の負荷を排除します。

ニューラルネットワークが簡単に(第37回):スパースアテンション(Sparse Attention)
前回は、アテンションメカニズムをアーキテクチャーに用いたリレーショナルモデルについて説明しました。これらのモデルの特徴の1つは、コンピューティングリソースを集中的に利用することです。今回は、セルフアテンションブロック内部の演算回数を減らす仕組みの1つについて考えてみたいと思います。これにより、モデルの一般的なパフォーマンスが向上します。


グラフィカルインターフェイスXI:ライブラリコードのリファクタリング(ビルド14.1)
ライブラリが大きくなるにつれて、コードをサイズを減らすために最適化が再び必要がです。本稿で説明するライブラリのバージョンはさらにオブジェクト指向になっており、コードの学習もさらに容易になります。読者は、最新の変更の詳細な記述によって、独自のニーズに基づいて独自にライブラリを開発できるでしょう。


DoEasyライブラリでのその他のクラス(第69部): チャットオブジェクトコレクションクラス
本稿からチャートオブジェクトコレクションクラスの開発を開始します。このクラスでは、サブウィンドウと指標とともにチャートオブジェクトのコレクションリストを保存し、選択したチャートとそのサブウィンドウ、または複数のチャートのリストを一度に操作する機能を提供します。

ニューラルネットワークが簡単に(第22部):回帰モデルの教師なし学習
モデルと教師なし学習アルゴリズムの研究を続けます。今回は、回帰モデルの学習に適用した場合のオートエンコーダの特徴について提案します。

データサイエンスと機械学習(第24回):通常のAIモデルによるFX時系列予測
外国為替市場において、過去を知らずに将来のトレンドを予測することは非常に困難です。過去の値を考慮して将来の予測をおこなうことができる機械学習モデルは非常に少ないです。この記事では、市場に勝つために古典的な(非時系列)人工知能モデルを使用する方法について説明します。

機械学習や取引におけるメタモデル:取引注文のオリジナルタイミング
機械学習におけるメタモデル:人間がほとんど介在しない取引システムの自動作成 - いつ、どのように取引をおこなうかはモデルが自ら決定します。

母集団最適化アルゴリズム:重力探索アルゴリズム(GSA)
GSAは、無生物から着想を得た母集団最適化アルゴリズムです。アルゴリズムに実装されたニュートンの重力の法則のおかげで、その物体の相互作用をモデル化する高い信頼性によって、惑星系や銀河団の魅惑的なダンスを観察することができます。今回は、最も興味深く、独創的な最適化アルゴリズムの1つを考えてみます。また、宇宙物体の移動シミュレータも提示されています。

MetaTrader 5用のMQTTクライアントの開発:TDDアプローチ(第4回)
この記事は、MQTTプロトコルのネイティブMQL5クライアントの開発ステップを説明する連載の第4回です。このセクションでは、MQTT v5.0のプロパティとは何か、そのセマンティクス、いくつかのプロパティの読み方について説明し、プロトコルを拡張するためにプロパティをどのように使用できるかの簡単な例を示します。


トレーダミネーター 3:売買ロボットの台頭
記事 "Dr. Tradelove..." で Expert Advisorを作成しました。それは選択済みのトレーディングシステムのパラメータを自立的に最適化するものです。それ以上に EAにある一つのトレーディングシステムのパラメータだけを最適化するのではなく、複数あるトレーディングシステムから最良のものを選ぶExpert Advisorを作成しようと決めました。それがどうなったか見ていきます。


テスターにおける再クオートのモデル化と Expert Advisor 安定性解析
再クオートは多くの Expert Advisors にとって災難です。とりわけトレードへのエンター/エグジット条件の感度が高い場合は。本稿では再クオートについての EA 安定性を確認する方法を提供します。

ニューラルネットワークが簡単に(第18部):アソシエーションルール
この連載の続きとして、教師なし学習の手法の中で、もう1つのタイプの問題であるアソシエーションルールのマイニングについて考えてみましょう。この問題タイプは、小売業、特にスーパーマーケットで、市場の分類を分析するために最初に使用されました。今回は、このようなアルゴリズムの取引への応用についてお話します。

MQL5入門(第6部):MQL5における配列関数の入門ガイド (II)
MQL5の旅の次の段階を始めましょう。この洞察に満ちて初心者に優しい記事では、残りの配列関数について調べ、複雑な概念を解明し、効率的な取引戦略を作成できるようにします。ArrayPrint、ArrayInsert、ArraySize、ArrayRange、ArrarRemove、ArraySwap、ArrayReverse、ArraySortについて説明します。アルゴリズム取引の専門知識を、これらの必要不可欠な配列関数で高めてください。一緒にMQL5マスターへの道を歩みましょう。


2013 年第三四半期 MetaTrader AppStore 実績
また四半期が経過したところで、 MetaTrader AppStore の実績を集計することにしました。MetaTrader AppStore は MetaTrader の売買ロボットおよびテクニカルインディケータの最大ストアです。報告対象四半期の終わりまでに「マーケット」には 500 人以上の開発者が 1,200 以上のプロダクツを出しました。