

DoEasyライブラリのグラフィックス(第80部): 「幾何学的アニメーションフレーム」オブジェクトクラス
本稿では、前の記事のクラスのコードを最適化し、指定された数の頂点を持つ正多角形を描画するための幾何学的アニメーションフレームオブジェクトクラスを作成します。

リプレイシステムの開発—市場シミュレーション(第5回):プレビューの追加
現実的で利用しやすい方法で市場リプレイシステムを実装する方法を開発することができたので、プロジェクトを続けて、リプレイの動作を改善するためのデータを追加してみましょう。

プライスアクション分析ツールキットの開発(第1回):チャートプロジェクター
このプロジェクトは、MQL5アルゴリズムを活用して、MetaTrader 5向けの包括的な分析ツールセットを開発することを目的としています。これらのツールは、スクリプトやインジケーターからAIモデルやエキスパートアドバイザー(EA)に至るまで幅広く、市場分析プロセスの自動化を実現します。場合によっては、これらのツールによって、高度な分析を人間の介入なしで実行し、適切なプラットフォームに結果を予測することも可能になります。どのようなチャンスも逃しません。一緒に強力な市場分析用カスタムツールチェストを構築するプロセスを探求していきましょう。まず、「チャートプロジェクター」と名付けたシンプルなMQL5プログラムを開発することから始めます。

ニューラルネットワークの実験(第2回):スマートなニューラルネットワークの最適化
この記事では、実験と非標準的なアプローチを使用して、収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。ニューラルネットワークを取引に活用するための自給自足ツールとしてMetaTrader 5を使用します。

知っておくべきMQL5ウィザードのテクニック(第38回):ボリンジャーバンド
ボリンジャーバンドは、多くのトレーダーが手動で取引を発注し、決済するために使用する、非常に一般的なエンベロープ指標です。この指標が生成する可能性のあるシグナルをできるだけ多く検討し、ウィザードで組み立てたエキスパートアドバイザー(EA)でどのように使用できるかを見ていきます。

MQL5での価格バーの並べ替え
この記事では、価格バーを並べ替えるアルゴリズムを紹介し、EAの潜在的な購入者を欺くためにストラテジーのパフォーマンスが捏造された事例を認識するために並べ替えテストをどのように使用できるかを詳述します。

DoEasyライブラリの時系列(第49部): 複数銘柄・複数期間の複数バッファ標準指標
本稿では、ライブラリクラスを改善して、データを表示するために複数の指標バッファを必要とする複数銘柄・複数期間標準指標を開発する機能を実装します。

データサイエンスと機械学習—ニューラルネットワーク(第02回):フィードフォワードNNアーキテクチャの設計
フィードフォワード(予測制御)ニューラルネットワークについて説明する前に、少し説明しておくことがあって、設計もその1つです。入力、隠れ層の数、および各ネットワークのノードに対する柔軟なニューラルネットワークを構築および設計する方法を見てみましょう。

MQL5の圏論(第5回)等化子
圏論は、数学の多様かつ拡大を続ける分野であり、最近になってMQL5コミュニティである程度取り上げられるようになりました。この連載では、その概念と原理のいくつかを探索して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。

データサイエンスと機械学習(第19回):AdaBoostでAIモデルをパワーアップ
AdaBoostは、AIモデルのパフォーマンスを向上させるために設計された強力なブースティングアルゴリズムです。AdaBoostはAdaptive Boostingの略で、弱い学習機をシームレスに統合し、その集合的な予測力を強化する洗練されたアンサンブル学習技法です。


DoEasyライブラリでの価格(第60部): 銘柄ティックデータのシリーズリスト
本稿では、単一銘柄のティックデータを格納するためのリストを作成し、EAでの必要なデータの作成と取得を確認します。さらに、使用される銘柄ごとの個別のティックデータリストでティックデータのコレクションを構成します。

ニューラルネットワークが簡単に(第34部):FQF(Fully Parameterized Quantile Function、完全にパラメータ化された分位数関数)
分散型Q学習アルゴリズムの研究を続けます。以前の記事では、分散型の分位数Q学習アルゴリズムについて検討しました。最初のアルゴリズムでは、与えられた範囲の値の確率を訓練しました。2番目のアルゴリズムでは、特定の確率で範囲を訓練しました。それらの両方で、1つの分布のアプリオリな知識を使用し、別の分布を訓練しました。この記事では、モデルが両方の分布で訓練できるようにするアルゴリズムを検討します。

MQL5でJanus factorを実装する
ゲイリー・アンダーソンは、「Janus factor」と名付けた理論に基づく市場分析法を開発しました。この理論は、トレンドを明らかにし、市場リスクを評価するために使用できる一連の指標を記述するものです。今回は、これらのツールをMQL5で実装してみます。

ニューラルネットワークが簡単に(第40回):大量のデータでGo-Exploreを使用する
この記事では、長い訓練期間に対するGo-Exploreアルゴリズムの使用について説明します。訓練時間が長くなるにつれて、ランダムな行動選択戦略が有益なパスにつながらない可能性があるためです。

MetaTrader 5でのモンテカルロ並べ替え検定
この記事では、Metatrader 5のみを使用して、任意のエキスパートアドバイザー(EA)でシャッフルされたティックデータに基づいて並べ替え検定を実施する方法を見てみましょう。

DoEasyライブラリの時系列(第57部): 指標バッファデータオブジェクト
本稿では、1つの指標に対して1つのバッファのすべてのデータを含むオブジェクトを開発します。このようなオブジェクトは、指標バッファのシリアルデータを格納するために必要になります。その助けを借りて、任意の指標のバッファデータ、および他の同様のデータを相互に並べ替えて比較できるようになります。

独自のLLMをEAに統合する(第5部):LLMを使った取引戦略の開発とテスト(III) - アダプタチューニング
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じてファインチューニングし、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。

ニューラルネットワークが簡単に(第65回):Distance Weighted Supervised Learning (DWSL)
この記事では、教師あり学習法と強化学習法の交差点で構築された興味深いアルゴリズムに触れます。

プログラミングパラダイムについて(第2部):オブジェクト指向アプローチによるプライスアクションエキスパートアドバイザーの開発
オブジェクト指向プログラミングのパラダイムとMQL5コードへの応用について学びます。この第2回目の記事では、オブジェクト指向プログラミングの具体的な内容をより深く掘り下げ、実践的な例を通して実体験を提供します。EMA指標とローソク足価格データを使用した、手続き型プライスアクションエキスパートアドバイザー(EA)をオブジェクト指向コードに変換する方法を学びます。

リプレイシステムの開発 - 市場シミュレーション(第11回):シミュレーターの誕生(I)
バーを形成するデータを使うためには、リプレイをやめてシミュレーターの開発に着手しなければなりません。難易度が最も低い1分バーを使用します。

ニューラルネットワークが簡単に(第30部):遺伝的アルゴリズム
今日はちょっと変わった学習法を紹介したいと思います。ダーウィンの進化論からの借用と言えます。先に述べた手法よりも制御性は劣るでしょうが、非差別的なモデルの訓練が可能です。

ニューラルネットワークが簡単に(第62回):階層モデルにおけるDecision Transformerの使用
最近の記事で、Decision Transformerを使用するためのいくつかの選択肢を見てきました。この方法では、現在の状態だけでなく、以前の状態の軌跡や、その中でおこなわれた行動も分析することができます。この記事では、階層モデルにおけるこの方法の使用に焦点を当てます。

Pythonを使用した深層学習GRUモデルとEAによるONNX、GRUとLSTMモデルの比較
Pythonを使用してGRU ONNXモデルを作成する深層学習のプロセス全体を説明し、最後に取引用に設計されたエキスパートアドバイザー(EA)の作成と、その後のGRUモデルとLSTNモデルの比較をおこないます。

ニューラルネットワークが簡単に(第61回):オフライン強化学習における楽観論の問題
オフライン訓練では、訓練サンプルデータに基づいてエージェントの方策を最適化します。その結果、エージェントは自分の行動に自信を持つことができます。しかし、そのような楽観論は必ずしも正当化されるとは限らず、模型の操作中にリスクを増大させる可能性があります。今日は、こうしたリスクを軽減するための方法の1つを紹介しましょう。

一からの取引エキスパートアドバイザーの開発(第14部):価格別出来高の追加((II)
今日は、EAにいくつかのリソースを追加します。この興味深い記事では、情報を提示するためのいくつかの新しいアイデアと方法を提供します。同時に、プロジェクトの小さな欠陥を修正するのにも役立ちます。

母集団最適化アルゴリズム:ネルダー–ミード法、またはシンプレックス(NM)検索法
この記事では、ネルダー–ミード法の完全な探求を提示し、最適解を達成するために各反復でシンプレックス(関数パラメータ空間)がどのように修正され、再配置されるかを説明し、この方法がどのように改善されるかを説明します。

MQL5-Telegram統合エキスパートアドバイザーの作成(第2回):MQL5からTelegramへのシグナル送信
この記事では、移動平均クロスオーバーシグナルをTelegramに送信するMQL5-Telegram統合エキスパートアドバイザー(EA)を作成します。移動平均クロスオーバーから売買シグナルを生成し、MQL5で必要なコードを実装し、統合がシームレスに機能するようにするプロセスを詳しく説明します。その結果、リアルタイムの取引アラートをTelegramのグループチャットに直接提供するシステムが完成します。


DoEasy - コントロール(第32部):水平スクロールバー、マウスホイールスクロール
この記事では、水平スクロールバーオブジェクト機能の開発を完成します。また、スクロールバーのスライダーを動かしたり、マウスホイールを回転させたりしてコンテナの内容をスクロールできるようにするほか、MQL5の新しい注文実行ポリシーや新しいランタイムエラーコードを考慮したライブラリへの追加もおこないます。

データサイエンスとML(第31回):取引のためのCatBoost AIモデルの使用
CatBoost AIモデルは、その予測精度、効率性、散在する困難なデータセットに対する頑健性により、機械学習コミュニティの間で最近大きな人気を博しています。この記事では、外国為替市場を打ち負かすために、この種のモデルをどのように導入するかについて詳しく説明します。

データサイエンスと機械学習(第16回):決定木を見直す
連載「データサイエンスと機械学習」の最新作で、決定木の複雑な世界に飛び込みましょう。戦略的な洞察を求めるトレーダーのために、この記事は包括的な総括として、市場動向の分析において決定木が果たす強力な役割に光を当てています。これらのアルゴリズム木の根と枝を探り、取引の意思決定を強化する可能性を解き明かします。決定木について新たな視点から学び、複雑な金融市場をナビゲートする上で、決定木をどのように味方にできるかを発見しましょう。


DoEasyライブラリでの価格(第61部): 銘柄ティックシリーズのコレクション
プログラムでは作業に異なる銘柄を使用する可能性があるため、それぞれに個別のリストを作成する必要があります。本稿では、そのようなリストを組み合わせてティックデータコレクションにします。実際、これは、CObjectクラスのインスタンスへのポインタの動的配列のクラスおよび標準ライブラリの子孫に基づく通常のリストになります。

ニューラルネットワークが簡単に(第23部):転移学習用ツールの構築
転移学習については当連載ですでに何度も言及していますが、これはただの言及でした。この記事では、このギャップを埋めて、転移学習の詳しい調査を提案します。

Pythonを使ったEAとバックテストのための感情分析とディープラーニング
この記事では、EAで使用するPythonによる感情分析とONNXモデルを紹介します。あるスクリプトはTensorFlowで学習させたONNXモデルをディープラーニング予測用に実行し、別のスクリプトはニュースのヘッドラインを取得し、AIを使用して感情を数値化します。

MQL5の圏論(第3回)
圏論は数学の一分野であり、多様な広がりを見せていますが、MQL5コミュニティでは今のところ比較的知られていません。この連載では、その概念のいくつかを紹介して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。

リプレイシステムの開発(第28回):エキスパートアドバイザープロジェクト-C_Mouseクラス(II)
人々が初めてコンピューティングが可能なシステムを作り始めたとき、すべてには、プロジェクトを熟知しているエンジニアの参加が必要でした。コンピュータ技術の黎明期、プログラミング用の端末すらなかった時代の話です。それが発展し、より多くの人々が何かを創造できることに興味を持つようになると、新しいアイデアやプログラミングの方法が現れ、以前のようなコネクタの位置を変えるスタイルに取って変わりました。最初の端末が登場したのはこの時です。

リプレイシステムの開発 - 市場シミュレーション(第18回):ティックそしてまたティック(II)
明らかに、現在の指標は1分足を作成するのに理想的な時間からは程遠いです。それが最初に修正することです。同期の問題を解決するのは難しくありません。難しそうに思えるかもしれませんが、実際はとても簡単です。前回の記事の目的は、チャート上の1分足を作成するために使用されたティックデータを気配値ウィンドウに転送する方法を説明することであったため、必要な修正はおこないませんでした。