ニューラルネットワークが簡単に(第89回):FEDformer (Frequency Enhanced Decomposition Transformer)
これまで検討してきたすべてのモデルは、環境の状態を時系列として分析します。ただし、時系列は周波数特徴の形式で表現することもできます。この記事では、時系列の周波数成分を使用して将来の状態を予測するアルゴリズムを紹介します。
知っておくべきMQL5ウィザードのテクニック(第27回):移動平均と迎角
迎角はよく引用される指標で、その急勾配は優勢なトレンドの強さと強い相関があると理解されています。一般的にどのように使用され、理解されているかを調べ、それを使用する取引システムの利益のために、その測定方法に導入可能な変更があるかどうかを検討します。
知っておくべきMQL5ウィザードのテクニック(第50回):Awesome Oscillator
Awesome Oscillatorは、モメンタム(勢い)を測定するために使用されるビル・ウィリアムズのインジケーターの一つです。複数のシグナルを生成できるため、以前の記事と同様に、MQL5ウィザードクラスとアセンブリを活用して、パターンベースでこれらを確認します。
ニューラルネットワークが簡単に(第23部):転移学習用ツールの構築
転移学習については当連載ですでに何度も言及していますが、これはただの言及でした。この記事では、このギャップを埋めて、転移学習の詳しい調査を提案します。
母集団最適化アルゴリズム:Mind Evolutionary Computation (MEC)アルゴリズム
この記事では、Simple Mind Evolutionary Computation(Simple MEC, SMEC)アルゴリズムと呼ばれる、MECファミリーのアルゴリズムを考察します。このアルゴリズムは、そのアイデアの美しさと実装の容易さで際立っています。
母集団最適化アルゴリズム:クジラ最適化アルゴリズム(WOA)
(WOA)は、ザトウクジラの行動と狩猟戦略に着想を得たメタヒューリスティクスアルゴリズムです。WOAの主なアイデアは、クジラが獲物の周囲に泡を作り、螺旋状の動きで獲物に襲いかかる、いわゆる「バブルネット」と呼ばれる捕食方法を模倣することです。
MetaTrader 5を使用したPythonの高頻度裁定取引システム
この記事では、ブローカーの観点から見て合法であり、外国為替市場において数千もの合成価格を生成・分析し、利益を上げるために取引をおこなう裁定取引システムの構築方法について解説します。
DoEasyライブラリの時系列(第57部): 指標バッファデータオブジェクト
本稿では、1つの指標に対して1つのバッファのすべてのデータを含むオブジェクトを開発します。このようなオブジェクトは、指標バッファのシリアルデータを格納するために必要になります。その助けを借りて、任意の指標のバッファデータ、および他の同様のデータを相互に並べ替えて比較できるようになります。
母集団最適化アルゴリズム:魚群検索(FSS)
魚群検索(FSS)は、そのほとんど(最大80%)が親族の群落の組織的な群れで泳ぐという魚の群れの行動から着想を得た新しい最適化アルゴリズムです。魚の集合体は、採餌の効率や外敵からの保護に重要な役割を果たすことが証明されています。
MQL5でJanus factorを実装する
ゲイリー・アンダーソンは、「Janus factor」と名付けた理論に基づく市場分析法を開発しました。この理論は、トレンドを明らかにし、市場リスクを評価するために使用できる一連の指標を記述するものです。今回は、これらのツールをMQL5で実装してみます。
MLモデルとストラテジーテスターの統合(結論):価格予測のための回帰モデルの実装
この記事では、決定木に基づく回帰モデルの実装について説明します。モデルは金融資産の価格を予測しなければなりません。すでにデータを準備し、モデルを訓練評価し、調整最適化しました。ただし、このモデルはあくまで研究用であり、実際の取引に使用するものではないことに留意する必要があります。
ソフトウェア開発とMQL5におけるデザインパターン(第2回):構造パターン
この記事では、MQL5だけでなく他のプログラミング言語でも拡張可能で信頼性の高いアプリケーションを開発するために、デザインパターンのトピックが開発者としてどれほど重要であるかを学んだ後、当トピックについての記事を続けます。デザインパターンのもう1つのタイプである構造デザインパターンについて学び、クラスにあるものを使ってより大きな構造を形成することによってシステムをデザインする方法を学びます。
ニュース取引が簡単に(第6回):取引の実施(III)
この記事では、IDに基づいて個々のニュースイベントをフィルターする関数を実装します。さらに、以前のSQLクエリを改善し、追加情報が提供されたり、クエリの実行時間が短縮されるようになります。さらに、これまでの記事で作成したコードを機能的なものにします。
DoEasyライブラリの時系列(第49部): 複数銘柄・複数期間の複数バッファ標準指標
本稿では、ライブラリクラスを改善して、データを表示するために複数の指標バッファを必要とする複数銘柄・複数期間標準指標を開発する機能を実装します。
プログラミングパラダイムについて(第1部):プライスアクションエキスパートアドバイザー開発の手続き型アプローチ
プログラミングパラダイムとMQL5コードへの応用について学びます。この記事では、手続き型プログラミングの具体的な方法について、実践的な例を通して説明します。EMA指標とローソク足の価格データを使って、プライスアクションエキスパートアドバイザー(EA)を開発する方法を学びます。さらに、この記事では関数型プログラミングのパラダイムについても紹介しています。
ペア取引における平均回帰による統計的裁定取引:数学で市場を攻略する
本記事では、ポートフォリオレベルの統計的アービトラージの基本的な概念を紹介します。数学の深い知識がない読者にも理解しやすく説明し、実際の運用を始めるためのコンセプトフレームワークを提案することを目的としています。記事には、動作するエキスパートアドバイザー(EA)と、1年間のバックテストに関する注記、再現用の設定ファイル(.iniファイル)も含まれています。
時系列マイニングのためのデータラベル(第4回):ラベルデータを使用した解釈可能性の分解
この連載では、ほとんどの人工知能モデルに適合するデータを作成できる、時系列のラベル付け方法をいくつかご紹介します。ニーズに応じて的を絞ったデータのラベル付けをおこなうことで、訓練済みの人工知能モデルをより期待通りの設計に近づけ、モデルの精度を向上させ、さらにはモデルの質的飛躍を助けることができます。
多通貨エキスパートアドバイザーの開発(第20回):自動プロジェクト最適化段階のコンベアの配置(I)
私たちはすでに、自動最適化を支援するいくつかのコンポーネントを作成しています。作成の過程では、最小限の動作するコードを作るところからリファクタリングを経て、改善されたコードを得るという従来の循環的な構造に従いました。そろそろ、私たちが作成しているシステムの重要なコンポーネントでもあるデータベースの整理を始める時期です。
DoEasyライブラリのグラフィックス(第76部): フォームオブジェクトと事前定義されたカラースキーム
本稿では、さまざまなライブラリGUIデザインテーマの構築の概念について説明し、グラフィック要素クラスオブジェクトの子孫であるフォームオブジェクトを作成し、ライブラリのグラフィカルオブジェクトのシャドウを作成するため、および機能をさらに開発するためのデータを準備します。
DoEasyライブラリのグラフィックス(第94部): 複合グラフィカルオブジェクトの移動と削除
本稿では、さまざまな複合グラフィカルオブジェクトイベントの開発を開始します。また、複合グラフィカルオブジェクトの移動と削除についても部分的に検討します。実際、ここでは、前の記事で実装したものを微調整します。
ニューラルネットワークが簡単に(第44回):ダイナミクスを意識したスキルの習得
前回は、様々なスキルを学習するアルゴリズムを提供するDIAYN法を紹介しました。習得したスキルはさまざまな仕事に活用できます。しかし、そのようなスキルは予測不可能なこともあり、使いこなすのは難しくなります。この記事では、予測可能なスキルを学習するアルゴリズムについて見ていきます。
MQL5-Telegram統合エキスパートアドバイザーの作成(第1回):MQL5からTelegramへのメッセージ送信
この記事では、MQL5を使用してEAを作成し、Telegramに自動でメッセージを送信する方法を説明します。ボットのAPIトークンやチャットIDといった必要なパラメータを設定し、HTTP POSTリクエストを実行してメッセージを配信する流れを学びます。また、応答を処理し、万が一メッセージ送信が失敗した場合には、トラブルシューティングについても解説します。最終的には、MQL5を通じてTelegramにメッセージを送るボットを構築する手順をマスターします。
PythonとMQL5を使用した特徴量エンジニアリング(第3回):価格の角度(2)極座標
この記事では、あらゆる市場における価格レベルの変化を、それに対応する角度の変化へと変換する2回目の試みをおこないます。今回は、前回よりも数学的に洗練されたアプローチを採用しました。得られた結果は、アプローチを変更した判断が正しかった可能性を示唆しています。本日は、どの市場を分析する場合でも、極座標を用いて価格レベルの変化によって形成される角度を意味のある方法で計算する方法についてご説明します。
ニューラルネットワークが簡単に(第54回):ランダムエンコーダを使った効率的な研究(RE3)
強化学習手法を検討するときは常に、環境を効率的に探索するという問題に直面します。この問題を解決すると、多くの場合、アルゴリズムが複雑になり、追加モデルの訓練が必要になります。この記事では、この問題を解決するための別のアプローチを見ていきます。
ニューラルネットワークが簡単に(第84回):RevIN (Reversible Normalization)
入力データの前処理がモデル訓練の安定性に大きく寄与することは、すでに広く知られています。オンラインで「生」の入力データを処理するために、バッチ正規化層が頻繁に使用されますが、時には逆の手順が求められる場合もあります。この記事では、この問題を解決するための1つのアプローチについて解説します。
リプレイシステムの開発(第28回):エキスパートアドバイザープロジェクト-C_Mouseクラス(II)
人々が初めてコンピューティングが可能なシステムを作り始めたとき、すべてには、プロジェクトを熟知しているエンジニアの参加が必要でした。コンピュータ技術の黎明期、プログラミング用の端末すらなかった時代の話です。それが発展し、より多くの人々が何かを創造できることに興味を持つようになると、新しいアイデアやプログラミングの方法が現れ、以前のようなコネクタの位置を変えるスタイルに取って変わりました。最初の端末が登場したのはこの時です。
最適化アルゴリズムを使用してEAパラメータをオンザフライで設定する
この記事では、最適化アルゴリズムを使用して最適なEAパラメータをオンザフライで見つけることや、取引操作とEAロジックの仮想化について、実践的な側面から論じています。この記事は、最適化アルゴリズムをEAに実装するためのインストラクションとして使用できます。
知っておくべきMQL5ウィザードのテクニック(第37回):線形カーネルとMatérnカーネルによるガウス過程回帰
線形カーネルは、線形回帰やサポートベクターマシンの機械学習で使用される、この種の行列の中で最も単純な行列です。一方、Matérnカーネルは、以前の記事で紹介したRBF (Radial Basis Function)をより汎用的にしたもので、RBFが想定するほど滑らかではない関数をマッピングするのに長けています。売買条件を予測する際に、両方のカーネルを利用するカスタムシグナルクラスを構築します。
多層パーセプトロンとバックプロパゲーションアルゴリズム(その3):ストラテジーテスターとの統合 - 概要(I)
多層パーセプトロンは、非線形分離可能な問題を解くことができる単純なパーセプトロンを進化させたものです。バックプロパゲーションアルゴリズムと組み合わせることで、このニューラルネットワークを効果的に学習させることができます。多層パーセプトロンとバックプロパゲーション連載第3回では、このテクニックをストラテジーテスターに統合する方法を見ていきます。この統合により、取引戦略を最適化するためのより良い意思決定を目的とした複雑なデータ分析が可能になります。この記事では、このテクニックの利点と問題点について説明します。
CatBoost機械学習モデルをトレンド追従戦略のフィルターとして活用する
CatBoostは、定常的な特徴量に基づいて意思決定をおこなうことに特化した、強力なツリーベースの機械学習モデルです。XGBoostやRandom Forestといった他のツリーベースモデルも、堅牢性、複雑なパターンへの対応力、そして高い解釈性といった点で共通した特長を備えています。これらのモデルは、特徴量分析からリスク管理に至るまで、幅広い分野で活用されています。本記事では、学習済みのCatBoostモデルを、従来型の移動平均クロスを用いたトレンドフォロー戦略のフィルターとして活用する手順を解説します。
古典的な戦略を再構築する(第12回):EURUSDブレイクアウト戦略
MQL5で収益性の高いブレイクアウト取引戦略を構築する挑戦に、ぜひご参加ください。EURUSDペアを選択し、時間枠で価格ブレイクアウトを取引しましたが、私たちのシステムでは偽のブレイクアウトと真のトレンドの始まりを区別するのが難しかったです。そこで、損失を最小限に抑えながら利益を増やすことを目的としたフィルターをシステムに組み込みました。最終的にはシステムを収益性の高いものにし、誤ったブレイクアウトに対する耐性を高めることに成功しました。
ニューラルネットワークが簡単に(第97回):MSFformerによるモデルの訓練
さまざまなモデルアーキテクチャの設計を検討する際、モデルの訓練プロセスには十分な注意が払われないことがよくあります。この記事では、そのギャップを埋めることを目指します。
初級から中級へ:FOR文
この記事では、FOR文の最も基本的な概念について解説します。ここで紹介する内容をしっかり理解することは非常に重要です。他の制御文と異なり、FOR文にはいくつか特有の癖があり、それが原因で複雑になりやすい側面があります。ですので、理解が追いつかないまま放置せず、できるだけ早い段階から学習と実践を始めるようにしましょう。。
どんな市場でも優位性を得る方法(第4回):CBOEのユーロおよびゴールドボラティリティインデックス
シカゴオプション取引所(CBOE)が提供する代替デー タを分析し、XAUEUR 銘柄を予測する際のディープニューラルネットワークの精度を向上させます。
DoEasyライブラリでの価格(第61部): 銘柄ティックシリーズのコレクション
プログラムでは作業に異なる銘柄を使用する可能性があるため、それぞれに個別のリストを作成する必要があります。本稿では、そのようなリストを組み合わせてティックデータコレクションにします。実際、これは、CObjectクラスのインスタンスへのポインタの動的配列のクラスおよび標準ライブラリの子孫に基づく通常のリストになります。
ソフトウェア開発とMQL5におけるデザインパターン(第3回):振る舞いパターン1
デザインパターンの新しい記事として、その1タイプである振る舞いパターンを取り上げ、作成されたオブジェクト間の通信を効果的に構築する方法について説明します。これらの振る舞いパターンを完成させることで、再利用可能かつ拡張可能で、テストされたソフトウェアをどのように作成し、構築できるかを理解できるようになります。
ニューラルネットワークが簡単に(第88回):Time-series Dense Encoder (TiDE)
研究者たちは、より正確な予測を得るために、しばしばモデルを複雑化します。しかし、その結果として、モデルの訓練やメンテナンスにかかるコストも増加します。この増大したコストは常に正当化されるのでしょうか。本記事では、シンプルで高速な線形モデルの特性を活かし、複雑なアーキテクチャを持つ最新モデルに匹敵する結果を示すアルゴリズムを紹介します。
リプレイシステムの開発 - 市場シミュレーション(第18回):ティックそしてまたティック(II)
明らかに、現在の指標は1分足を作成するのに理想的な時間からは程遠いです。それが最初に修正することです。同期の問題を解決するのは難しくありません。難しそうに思えるかもしれませんが、実際はとても簡単です。前回の記事の目的は、チャート上の1分足を作成するために使用されたティックデータを気配値ウィンドウに転送する方法を説明することであったため、必要な修正はおこないませんでした。