
Murrayシステム再訪問
グラフィカルな価格分析システムは、当然ながらトレーダーの間で人気があります。今回は、有名なレベルを含む完全なMurray(マレー)システム、および現在の価格ポジションを評価し、取引を決定するための有用な他のテクニックについて説明します。

ニューラルネットワークが簡単に(第54回):ランダムエンコーダを使った効率的な研究(RE3)
強化学習手法を検討するときは常に、環境を効率的に探索するという問題に直面します。この問題を解決すると、多くの場合、アルゴリズムが複雑になり、追加モデルの訓練が必要になります。この記事では、この問題を解決するための別のアプローチを見ていきます。

母集団最適化アルゴリズム:焼きなまし(SA)アルゴリズム(第1部)
焼きなましアルゴリズムは、金属の焼きなまし過程にヒントを得たメタヒューリスティックです。この記事では、このアルゴリズムを徹底的に分析し、この広く知られている最適化方法を取り巻く多くの一般的な信念や神話を暴露します。この記事の後半では、カスタムの等方的焼きなまし(Simulated Isotropic Annealing、SIA)アルゴリズムについて説明します。

知っておくべきMQL5ウィザードのテクニック(第30回):機械学習におけるバッチ正規化のスポットライト
バッチ正規化とは、ニューラルネットワークのような機械学習アルゴリズムに投入するデータの前処理です。これは、アルゴリズムが使用する活性化の種類を常に意識しながらおこなわれます。そこで、エキスパートアドバイザー(EA)を使って、そのメリットを享受するためのさまざまなアプローチを探ります。

どんな市場でも優位性を得る方法(第4回):CBOEのユーロおよびゴールドボラティリティインデックス
シカゴオプション取引所(CBOE)が提供する代替デー タを分析し、XAUEUR 銘柄を予測する際のディープニューラルネットワークの精度を向上させます。

母集団最適化アルゴリズム:微小人工免疫系(Micro-AIS)
この記事では、身体の免疫系の原理に基づいた最適化手法、つまりAISを改良した微小人工免疫系(Micro Artificial Immune System:Micro-AIS)について考察します。Micro-AISは、より単純な免疫系のモデルと単純な免疫情報処理操作を用います。また、この記事では、従来のAISと比較した場合のMicro-AISの利点と欠点についても触れています。

ニューラルネットワークが簡単に(第84回):RevIN (Reversible Normalization)
入力データの前処理がモデル訓練の安定性に大きく寄与することは、すでに広く知られています。オンラインで「生」の入力データを処理するために、バッチ正規化層が頻繁に使用されますが、時には逆の手順が求められる場合もあります。この記事では、この問題を解決するための1つのアプローチについて解説します。

MLモデルとストラテジーテスターの統合(結論):価格予測のための回帰モデルの実装
この記事では、決定木に基づく回帰モデルの実装について説明します。モデルは金融資産の価格を予測しなければなりません。すでにデータを準備し、モデルを訓練評価し、調整最適化しました。ただし、このモデルはあくまで研究用であり、実際の取引に使用するものではないことに留意する必要があります。

MQL5での取引戦略の自動化(第1回):Profitunityシステム(ビル・ウィリアムズ著「Trading Chaos」)
この記事では、ビル・ウィリアムズのProfitunityシステムを詳しく分析し、その核心となる構成要素や、市場の混乱の中での独自の取引アプローチを解説します。MQL5用いたシステムの実装方法を、主要なインジケーターやエントリー/エグジットシグナルの自動化に焦点を当てながら説明します。さらに、戦略のテストと最適化をおこない、さまざまな市場環境におけるパフォーマンスについて考察します。

データサイエンスとML(第32回):AIモデルを最新の状態に保つ、オンライン学習
常に変化する取引の世界では、市場の変動に適応することは選択肢ではなく、必要不可欠です。新たなパターンやトレンドが日々生まれる中で、最先端の機械学習モデルでさえ、進化する環境に対応し続けることが困難になっています。本記事では、モデルを自動的に再訓練することで、その有効性を維持し、新しい市場データに柔軟に適応させる方法を解説します。


DoEasyライブラリのグラフィックス(第76部): フォームオブジェクトと事前定義されたカラースキーム
本稿では、さまざまなライブラリGUIデザインテーマの構築の概念について説明し、グラフィック要素クラスオブジェクトの子孫であるフォームオブジェクトを作成し、ライブラリのグラフィカルオブジェクトのシャドウを作成するため、および機能をさらに開発するためのデータを準備します。

ニューラルネットワークが簡単に(第19部):MQL5を使用したアソシエーションルール
アソシエーションルールの検討を続けます。前回の記事では、このタイプの問題の理論的側面について説明しました。この記事では、MQL5を使用したFPGrowthメソッドの実装を紹介します。また、実装したソリューションを実際のデータを使用してテストします。

ニューラルネットワークが簡単に(第25部):転移学習の実践
前々回、前回と、ニューラルネットワークのモデルを作成・編集するためのツールを開発しました。いよいよ転移学習技術の利用可能性を実例で評価することになります。

ニューラルネットワークが簡単に(第41回):階層モデル
この記事では、複雑な機械学習問題を解決するための効果的なアプローチを提供する階層的訓練モデルについて説明します。階層モデルはいくつかのレベルで構成され、それぞれがタスクの異なる側面を担当します。

ニューラルネットワークが簡単に(第44回):ダイナミクスを意識したスキルの習得
前回は、様々なスキルを学習するアルゴリズムを提供するDIAYN法を紹介しました。習得したスキルはさまざまな仕事に活用できます。しかし、そのようなスキルは予測不可能なこともあり、使いこなすのは難しくなります。この記事では、予測可能なスキルを学習するアルゴリズムについて見ていきます。

ニューラルネットワークが簡単に(第97回):MSFformerによるモデルの訓練
さまざまなモデルアーキテクチャの設計を検討する際、モデルの訓練プロセスには十分な注意が払われないことがよくあります。この記事では、そのギャップを埋めることを目指します。

初心者からエキスパートへ:サポートとレジスタンスの強度指標(SRSI)
本記事では、MQL5プログラミングを活用して市場の価格レベルを正確に特定し、弱いレベルと強いレベルを見分ける方法についての知見を共有します。さらに、実用的なサポートおよびレジスタンス強度インジケーター(SRSI)を完全に開発していきます。

MQL5で取引管理者パネルを作成する(第1回):メッセージングインターフェイスの構築
この記事では、システム管理者を対象に、プラットフォーム内で他のトレーダーと直接コミュニケーションを図るための、MetaTrader 5用メッセージングインターフェイスの作成について説明します。ソーシャルプラットフォームとMQL5との最近の統合により、さまざまなチャンネルに素早くシグナルをブロードキャストことができるようになりました。YESかNOのどちらかをクリックするだけで、送られてきたシグナルを検証できることをご想像ください。詳しくは本稿をご覧ください。

多層パーセプトロンとバックプロパゲーションアルゴリズム(その3):ストラテジーテスターとの統合 - 概要(I)
多層パーセプトロンは、非線形分離可能な問題を解くことができる単純なパーセプトロンを進化させたものです。バックプロパゲーションアルゴリズムと組み合わせることで、このニューラルネットワークを効果的に学習させることができます。多層パーセプトロンとバックプロパゲーション連載第3回では、このテクニックをストラテジーテスターに統合する方法を見ていきます。この統合により、取引戦略を最適化するためのより良い意思決定を目的とした複雑なデータ分析が可能になります。この記事では、このテクニックの利点と問題点について説明します。

ビジュアルプログラミング言語DRAKON:MQL開発者と顧客のコミュニケーションツール
DRAKONは、ロシアの宇宙プロジェクト(例えば、「Buran」再利用可能宇宙船プロジェクト)のプログラマーと、異なる分野の専門家(生物学者、物理学者、エンジニアなど)との対話を簡素化するために設計されたビジュアルプログラミング言語です。この記事では、DRAKONが、コードに触れたことがない人にとっても、アルゴリズムの作成にアクセスしやすく、直感的にし、また、顧客が取引ロボットを注文する際に自分の考えを説明しやすくし、複雑な関数でプログラマーのミスを少なくする方法についてお話します。

データサイエンスと機械学習(第20回):アルゴリズム取引の洞察、MQL5でのLDAとPCAの対決
MQL5取引環境での適用を解剖しながら、これらの強力な次元削減テクニックに隠された秘密を解き明かしていきます。線形判別分析(LDA)と主成分分析(PCA)のニュアンスを深く理解し、戦略開発と市場分析への影響を深く理解します。

どんな市場でも優位性を得る方法(第5回):FRED EURUSD代替データ
本日の議論では、セントルイス連邦準備銀行の広義のドル指数に関する代替日次データとその他のマクロ経済指標の集合を使用して、EURUSDの将来の為替レートを予測しました。残念ながら、データはほぼ完璧な相関関係にあるように見えますが、モデルの精度において際立った向上は実現できず、投資家は代わりに通常の市場相場を使用した方がよい可能性があることを示唆している可能性があります。

母集団最適化アルゴリズム:魚群検索(FSS)
魚群検索(FSS)は、そのほとんど(最大80%)が親族の群落の組織的な群れで泳ぐという魚の群れの行動から着想を得た新しい最適化アルゴリズムです。魚の集合体は、採餌の効率や外敵からの保護に重要な役割を果たすことが証明されています。

Python、ONNX、MetaTrader 5:RobustScalerとPolynomialFeaturesデータ前処理を使用したRandomForestモデルの作成
この記事では、Pythonでランダムフォレストモデルを作成し、モデルを訓練して、データ前処理をおこなったONNXパイプラインとして保存します。その後、MetaTrader 5ターミナルでモデルを使用します。

トレンドフォロー型ボラティリティ予測のための隠れマルコフモデル
隠れマルコフモデル(HMM)は、観測可能な価格変動を分析することで、市場の潜在的な状態を特定する強力な統計手法です。取引においては、市場レジームの変化をモデル化・予測することで、ボラティリティの予測精度を高め、トレンドフォロー戦略の構築に役立ちます。本記事では、HMMをボラティリティのフィルターとして活用し、トレンドフォロー戦略を開発するための一連の手順を紹介します。

MQL5で日次ドローダウンリミッターEAを作成する
この記事では、取引アルゴリズムに基づくエキスパートアドバイザー(EA)の作成方法を、詳細な観点から解説しています。これはMQL5のシステムを自動化し、デイリードローダウンをコントロールするのに役立ちます。

母集団最適化アルゴリズム:電磁気的アルゴリズム(ЕМ)
この記事では、様々な最適化問題において、電磁気的アルゴリズム(EM、electroMagnetism-like Algorithm)を使用する原理、方法、可能性について解説しています。EMアルゴリズムは、大量のデータや多次元関数を扱うことができる効率的な最適化ツールです。

母集団最適化アルゴリズム:Mind Evolutionary Computation (MEC)アルゴリズム
この記事では、Simple Mind Evolutionary Computation(Simple MEC, SMEC)アルゴリズムと呼ばれる、MECファミリーのアルゴリズムを考察します。このアルゴリズムは、そのアイデアの美しさと実装の容易さで際立っています。

ソフトウェア開発とMQL5におけるデザインパターン(第2回):構造パターン
この記事では、MQL5だけでなく他のプログラミング言語でも拡張可能で信頼性の高いアプリケーションを開発するために、デザインパターンのトピックが開発者としてどれほど重要であるかを学んだ後、当トピックについての記事を続けます。デザインパターンのもう1つのタイプである構造デザインパターンについて学び、クラスにあるものを使ってより大きな構造を形成することによってシステムをデザインする方法を学びます。

価格変動モデルとその主な規定(第2回)。価格場の確率的発展方程式と観測されたランダムウォークの発生
この記事では、確率的な価格場の発展方程式と、今後の価格高騰の基準について考察しています。また、チャート上での価格値の本質と、そのランダムウォークが発生するメカニズムも明らかにします。

DoEasy-コントロール(第24部):ヒント補助WinFormsオブジェクト
今回は、すべてのWinFormsライブラリオブジェクトの基本オブジェクトとメインオブジェクトを指定するロジックを見直し、新しいヒント基本オブジェクトとその派生クラスのいくつかを開発して、区切りの移動可能な方向を示すことにします。

母集団最適化アルゴリズム:進化戦略、(μ,λ)-ESと(μ+λ)-ES
この記事では、進化戦略(Evolution Strategies:ES)として知られる最適化アルゴリズム群について考察します。これらは、最適解を見つけるために進化原理を用いた最初の集団アルゴリズムの1つです。従来のESバリエーションへの変更を実施し、アルゴリズムのテスト関数とテストスタンドの手法を見直します。

知っておくべきMQL5ウィザードのテクニック(第23回):CNN
畳み込みニューラルネットワーク(Convolutional Neural Network: CNN)もまた、多次元のデータセットを主要な構成要素に分解することに特化した機械学習アルゴリズムです。一般的にどのように達成されるかを見て、別のMQL5ウィザードシグナルクラスのトレーダーへの応用の可能性を探ります。

SMAとEMAを使った自動最適化された利益確定と指標パラメータの例
この記事では、機械学習とテクニカル分析を組み合わせた、FX取引向けの高度なEAを紹介します。アップル株取引を中心に、適応的な最適化やリスク管理、複数の取引戦略を活用しています。バックテストでは、収益性が高い一方で、大きなドローダウンを伴う結果が得られており、さらなる改良の余地が示唆されています。

リプレイシステムの開発—市場シミュレーション(第7回):最初の改善(II)
前回の記事では、可能な限り最高の安定性を確保するために、レプリケーションシステムにいくつかの修正を加え、テストを追加しました。また、このシステムのコンフィギュレーションファイルの作成と使用も開始しました。

ニューラルネットワークが簡単に(第57回):Stochastic Marginal Actor-Critic (SMAC)
今回は、かなり新しいStochastic Marginal Actor-Critic (SMAC)アルゴリズムを検討します。このアルゴリズムは、エントロピー最大化の枠組みの中で潜在変数方策を構築することができます。

DoEasy-コントロール(第15部):TabControl WinFormsオブジェクト — 複数行のタブヘッダー、タブ処理メソッド
この記事では、TabControl WinFormオブジェクトの作業を続けます。タブフィールドオブジェクトクラスを作成して複数の行にタブヘッダーを配置できるようにし、オブジェクトタブを処理するメソッドを追加します。

ニュース取引が簡単に(第6回):取引の実施(III)
この記事では、IDに基づいて個々のニュースイベントをフィルターする関数を実装します。さらに、以前のSQLクエリを改善し、追加情報が提供されたり、クエリの実行時間が短縮されるようになります。さらに、これまでの記事で作成したコードを機能的なものにします。

DoEasy - コントロール(第5部):WinForms基本オブジェクト、Panelコントロール、AutoSizeパラメータ
本稿では、すべてのライブラリWinFormsオブジェクトの基本オブジェクトを作成し、Panel WinFormsオブジェクトのAutoSizeプロパティ(オブジェクトの内部コンテンツに合わせた自動サイズ変更)の実装を開始する予定です。