ニューラルネットワークが簡単に(第37回):スパースアテンション(Sparse Attention)
前回は、アテンションメカニズムをアーキテクチャーに用いたリレーショナルモデルについて説明しました。これらのモデルの特徴の1つは、コンピューティングリソースを集中的に利用することです。今回は、セルフアテンションブロック内部の演算回数を減らす仕組みの1つについて考えてみたいと思います。これにより、モデルの一般的なパフォーマンスが向上します。
2013 年第三四半期 MetaTrader AppStore 実績
また四半期が経過したところで、 MetaTrader AppStore の実績を集計することにしました。MetaTrader AppStore は MetaTrader の売買ロボットおよびテクニカルインディケータの最大ストアです。報告対象四半期の終わりまでに「マーケット」には 500 人以上の開発者が 1,200 以上のプロダクツを出しました。
チャート上のインタラクティブなコントロールを備えたインジケーター
この記事は、インジケーターインターフェイスに関する新しい視点を提供します。利便性を重視していきます。何年にもわたって数十の異なる取引戦略を試し、数百の異なるインジケーターをテストしてきた結果、この記事で共有したいいくつかの結論に達しました。
ニューラルネットワークが簡単に(第26部):強化学習
機械学習の手法の研究を続けます。今回からは、もう1つの大きなテーマである「強化学習」を始めます。この方法では、モデルは問題を解決するためのある種の戦略を設定することができます。この強化学習の特性は、取引戦略を構築する上で新たな地平を切り開くものと期待されます。
MQL5でボリンジャーバンド取引戦略を実装する:ステップごとのガイド
ボリンジャーバンド売買戦略に基づくMQL5での自動売買アルゴリズム実装のためのステップごとのガイドです。トレーダーに役立つEAの作成に基づく詳細なチュートリアルです。
グラフィカルインタフェースX:レンダーテーブルの新機能(ビルド9)
今日までは、ライブラリの最も高度なテーブルはCTableでした。このテーブルは、OBJ_EDIT型のエディットボックスから組み立てられており、さらなる開発は難しいです。したがって、機能の最大化においては、ライブラリ開発の現段階を考慮しても、CCanvasTable型のレンダーテーブルを開発する方が賢明です。その現バージョンはまったく使えない状態ですが、この記事から始めて状況を改善していきましょう。
MQL5の電子テーブル
本稿では、第一ディメンションに異なるタイプのデータを含む動的二次元配列クラスについて述べていきます。テーブル形式でデータを格納すると、整理の幅広い問題を解決し、異なるタイプの広範囲におよぶ情報を格納および処理するのに好都合です。テーブルに連携する機能性を実装するクラスのソースコードは本稿に添付があります。
誤った考え、パート2統計は、偽りの科学か、暴落するなくてはならない歴史です。
統計的なメソッドに客観的な現実、つまり金融上の出来事に適用とする試みは、不十分なデータや、確率分布やプロセスの非定常性に直面し、虚しく失敗してしまっています。この記事では、そのような金融上の出来事ではなく、主観的な意見を記述し、トレーダーがどのようにこれらを防ごうとしたか、トレーダーシステムについて記述します。トレーディング結果の統計的な規則性の抽出は、むしろ大変面白い作業です。時折、このプロセスのそのモデルに関する結論が導かれ、これらがトレーディングシステムに適用されます。
Expert Advisor動作中のバランス曲線勾配調整
トレードシステムのルールを見つけ、それをExpert Advisorにプログラムするのが仕事の半分です。Expert Advisorはトレーディング結果を集積するので、いくらかの処理を修正する必要があります。本項では、バランス曲線の勾配測定のフィードバックを作成することで、Expert Advisorのパフォーマンスを向上させる方法の一つについて述べます。
アリゲーターによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標に基づいて取引システムを設計する方法についての連載は今回で完結します。アリゲーター指標を基にした取引システムの作り方を学びます。
グラフィカル ライン リクエストのメタ言語トレーディングと適しているトレーディング学習
本稿では、従来のテクニカル分析と互換性のある簡単で解りやすいグラフィカル トレーディングリクエスト言語について説明します。添付の G ターミナルは取引結果のグラフィカル分析に使用される半自動 Expert Advisor です。初心者トレーダーの独学と訓練に適しています。
ニューラルネットワークの実験(第6回):価格予測のための自給自足ツールとしてのパーセプトロン
この記事では、パーセプトロンを自給自足の価格予測ツールとして使用する例として、一般的な概念と最もシンプルな既製のエキスパートアドバイザー(EA)を紹介し、その最適化の結果について説明します。
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第5回): ケルトナーチャネルのボリンジャーバンド—指標シグナル
この記事の多通貨エキスパートアドバイザー(EA)は、1つの銘柄チャートからのみ複数の銘柄ペアの取引(注文を出す、注文を決済する、トレーリングストップロスとトレーリングプロフィットなどで注文を管理するなど)ができるEAまたは自動売買ロボットです。この記事では、2つの指標、この場合はケルトナーチャネルのボリンジャーバンド®からのシグナルを使用します。
MQL5でゾーン回復マーチンゲール戦略を開発する
この記事では、ゾーン回復取引アルゴリズムに基づくエキスパートアドバイザー(EA)の作成に向けて実施すべきステップについて、詳細な観点から論じています。これは、アルゴリズムトレーダーの時間を節約するシステムの自動化に役立ちます。
DoEasyライブラリでのその他のクラス(第68部): チャットウィンドウオブジェクトクラスとチャートでの指標オブジェクトクラス
本稿では、チャートオブジェクトクラスの開発を続け、利用可能な指標のリストを含むチャートウィンドウオブジェクトのリストに追加します。
トレーダーは開発者によるサービスを必要とするのでしょうか?
アルゴリズムによるトレードが人気になり求められ、珍しいアルゴリズムや変わった作業への需要につながりました。ある程度、そのような複雑なアプリケーションは、Code BaseやMarketにて取得できます。トレーダーは、これらのアプリケーションに数クリックでアクセスできますが、これらは完全に彼らの要求を満たすことができないこともあります。その場合、トレーダーは、MQL5 Freelanceセクションにて望ましいアプリケーションを作成できる開発者を探し、注文を行います。
マーケット価格予測に対する汎用回帰モデル(第2部): 自然、技術、社会の過渡関数
本稿は前稿からの論理的続編で、最初の記事で出された結論を確認する事実にハイライトを当てています。これらの事実は、その出版後10年以内に明らかになったもので、マーケット価格変化のパターンを説明する3つの検出された動的過渡関数を中心としています。
取引におけるトレーリングストップ
この記事では、取引でのトレーリングストップの使い方について説明します。トレーリングストップがどの程度有用で効果的なのか、どのように利用できるのかを評価します。トレーリングストップの効率は、価格のボラティリティと損切りレベルの選択に大きく左右されます。損切りを設定するには、さまざまなアプローチを用いることができます。
ニューラルネットワークが簡単に(第14部):データクラスタリング
前回の記事を公開してから1年以上が経過しました。アイデアを修正して新しいアプローチを開発するには、これはかなりの時間です。この新しい記事では、以前に使用された教師あり学習法から逸れようと思います。今回は、教師なし学習アルゴリズムについて説明します。特に、クラスタリングアルゴリズムの1つであるk-meansについて検討していきます。
最後の改革
トレーディングターミナルを見てください。価格の提示はどのような意味に見えますか?バー、ろうそく足、罫線私たちは価格からしか利益を得ない一方、時間と価格の両方を追求しています。市場を分析する際に、価格のみに注意を向けるだけで良いのでしょうか?この記事は、(「3目並べ」)ポイント・フィギュアチャート作成のためのスクリプトとアルゴリズムを提唱します。記されている推奨にて、記載されている実用的な使用方法の様々な価格パターンを考察していきます。
DoEasy - コントロール(第31部):ScrollBarコントロールのコンテンツのスクロール
この記事では、水平スクロールバーのボタンを使用してコンテナのコンテンツをスクロールする機能を実装します。
MQL5入門(第5部):MQL5における配列関数の入門ガイド
全くの初心者のために作られた第5部では、MQL5配列の世界を探検してみましょう。この記事は、複雑なコーディングの概念を簡素化し、明快さと包括性に重点を置いています。質問が受け入れられ、知識が共有される、学習者のコミュニティに仲間入りしてください。
DoEasyライブラリのグラフィックス(第87部): グラフィカルオブジェクトコレクション - プロパティ変更の管理
本稿では、標準のグラフィカルオブジェクトイベントの追跡作業を継続し、ユーザがターミナルで開いたチャートに配置されたグラフィカルオブジェクトのプロパティの変更を制御できる機能を作成します。
インディケーター情報の測定
機械学習は、ストラテジー開発の手法として注目されています。これまで、収益性と予測精度の最大化が重視される一方で、予測モデル構築のためのデータ処理の重要性はあまり注目されてきませんでした。この記事では、Timothy Masters著の書籍「Testing and Tuning Market Trading Systems」に記載されているように、予測モデル構築に使用するインディケーターの適切性を評価するために、エントロピーの概念を使用することについて考察しています。
一般的トレーディングシステムを基にしたExpert Advisors と売買ロボット最適化の錬金術(パート3)
本稿では、もっともシンプルなトレーディングシステムのアルゴリズム実装の分析を続行し、バックテストの自動化を紹介します。初心者トレーダーや EA プログラマ―に有用です。
戦略ビルダー機能の拡張
前の2つの記事では、さまざまなデータ型へのメリルパターンの適用について説明し、提示されたアイデアをテストするためのアプリケーションを開発しました。本稿では、引き続き戦略ビルダーで作業し、その効率を改善し、新しい機能を実装します。
ニューラルネットワークが簡単に(第46回):目標条件付き強化学習(GCRL)
今回は、もうひとつの強化学習アプローチを見てみましょう。これはGCRL(goal-conditioned reinforcement learning、目標条件付き強化学習)と呼ばれます。このアプローチでは、エージェントは特定のシナリオでさまざまな目標を達成するように訓練されます。
MetaTrader 5をPostgreSQLに接続する方法
この記事では、MQL5コードをPostgresデータベースに接続するための4つの方法について説明し、そのうちの1つであるREST APIの開発環境をWindows Subsystem For Linux (WSL)を使用して設定するためのステップバイステップのチュートリアルを提供します。APIのデモアプリが、データを挿入してそれぞれのテーブルにクエリを実行するための対応MQL5コード、このデータを使用するためのデモエキスパートアドバイザー(EA)とともに提供されます。
アルーン(Aroon)取引システムの構築とテスト
この記事では、指標の基本を学んだ後、どのようにアルーンの取引システムを構築できるかを学び、アルーンの指標に基づいた取引システムを構築するために必要なステップを紹介します。この取引システムを構築した後、利益が出るのかさらに最適化が必要なのかをテストします。
予測による統計的裁定取引
統計的裁定取引について調べ、共和分で相関する銘柄をPythonで検索し、ピアソン係数の指標を作成し、PythonとONNX モデルで予測をおこなって統計的裁定取引を行うEAを作成します。
MQL5.community 人名鑑
MQL5.com ウェブサイトはみなさんのことをとてもよく覚えています!何本のスレッドがすばらしい出来か、記事がどれほど人気か、「コードベース」のプログラムがどのくらいの頻度でダウンロードされるか。これは MQL5.comで記憶されていることのほんの小さな一部にしかすぎません。みなさんの実績はプロフィールで確認可能ですが、全体像はどうでしょうか?本稿では全 MQL5.community メンバーの実績概要を示します。
Bulls Powerによる取引システムの設計方法を学ぶ
最も人気のあるテクニカル指標によって取引システムを設計する方法を学ぶ連載の新しい記事へようこそ。この新しい記事では、Bulls Power(ブルパワー )テクニカル指標によって取引システムを設計する方法を学びます。
リプレイシステムの開発 — 市場シミュレーション(第4回):設定の調整(II)
システムとコントロールを作り続けましょう。サービスをコントロールする能力がなければ、システムを前進させ、改善することは難しくなります。
MQL5で動的な多銘柄多期間の相対力指標(RSI)指標ダッシュボードを作成する
この記事では、MQL5を使用して、動的に複数の銘柄と時間枠にわたるRSI指標のダッシュボードを開発し、トレーダーにリアルタイムでRSI値を提供する方法を解説します。このダッシュボードには、インタラクティブなボタン、リアルタイム更新、色分けされた指標が搭載されており、トレーダーがより的確な意思決定をおこなうためのサポートをします。
DoEasyライブラリの時系列(第48部): 複数銘柄・複数期間指標バッファ
本稿では、指標バッファオブジェクトのクラスを改善して、複数銘柄モードで動作するようにします。これにより、カスタムプログラムで複数銘柄・複数期間指標を作成するための道が開かれます。複数銘柄・複数期間指標標準指標を作成するために、不足している機能を計算バッファオブジェクトに追加します。
データサイエンスと機械学習(第14回):コホネンマップを使って市場で自分の道を見つける
複雑で変化し続ける市場をナビゲートする、最先端の取引アプローチをお探しですか。人工ニューラルネットワークの革新的な形態であるコホネンマップは、市場データの隠れたパターンやトレンドを発見するのに役立ちます。この記事では、コホネンマップがどのように機能するのか、そして、より賢く、より効果的な取引戦略を開発するために、どのように活用できるのかを探ります。経験豊富なトレーダーも、これから取引を始める人も、このエキサイティングな新しいアプローチを見逃す手はありません。
MQL5のインタラクティブGUIで取引チャートを改善する(前編):移動可能なGUI (I)
MQL5で動かせるGUIを作成するための包括的なガイドで、取引戦略やユーティリティでのダイナミックなデータ表現の力を解き放ちましょう。チャートイベントのコアコンセプトに触れ、同じチャート上にシンプルで複数の移動可能なGUIをデザインし、実装する方法を学びます。この記事では、GUIに要素を追加し、機能性と美しさを向上させるプロセスについても説明します。