

DoEasyライブラリでの価格(第62部): ティックシリーズをリアルタイムで更新して板情報で作業するための準備
この記事では、ティックデータの更新をリアルタイムで実装し、板情報を操作するための銘柄オブジェクトクラスを準備します(DOM自体は次の記事で実装されます)。

ニューラルネットワークが簡単に(第52回):楽観論と分布補正の研究
経験再現バッファに基づいてモデルが訓練されるにつれて、現在のActor方策は保存されている例からどんどん離れていき、モデル全体としての訓練効率が低下します。今回は、強化学習アルゴリズムにおけるサンプルの利用効率を向上させるアルゴリズムについて見ていきます。

データサイエンスと機械学習(第29回):AI訓練に最適なFXデータを選ぶための重要なヒント
この記事では、AIモデルのパフォーマンスを向上させるために、最も適切で高品質なFXデータを選択するための重要な側面について深く掘り下げます。

リプレイシステムの開発 - 市場シミュレーション(第12回):シミュレーターの誕生(II)
シミュレーターの開発は、見た目よりもずっと面白いものです。事態はさらに面白くなってきているため、今日は、この方向にもう少し踏み込んでみましょう。

ダイナミックマルチペアEAの形成(第1回):通貨相関と逆相関
ダイナミックマルチペアEAは、相関戦略と逆相関戦略の両方を活用し、取引パフォーマンスの最適化を図ります。リアルタイムの市場データを分析することで、通貨ペア間の相関関係や逆相関関係を特定し、それらを取引に活かします。

DoEasy-コントロール(第9部):WinFormsオブジェクトメソッド、RadioButtonおよびButtonコントロールの再配置
この記事では、WinFormsオブジェクトクラスメソッドの名前を修正し、ButtonおよびRadioButton WinFormsオブジェクトを作成します。

DoEasyライブラリの時系列(第58部): 指標バッファデータの時系列
時系列の操作に関するトピックのしめくくりとして、指標バッファに格納されているストレージ、検索、およびデータの並べ替えを整理します。これにより、プログラムでライブラリベースで作成される指標の値に基づいて分析をさらに実行できます。ライブラリのすべてのコレクションクラスの一般的な概念により、対応するコレクションで必要なデータを簡単に見つけることができます。それぞれ、今日作成されたクラスでも同じことが可能です。


DoEasyライブラリのグラフィックス(第79部): 「アニメーションフレーム」オブジェクトクラスとその子孫オブジェクト
本稿では、単一のアニメーションフレームとその子孫のクラスを開発します。このクラスでは、形状の下の背景を維持および復元しながら、形状を描画できるようにします。

DoEasy-コントロール(第18部):TabControlでタブをスクロールする機能
この記事では、ヘッダーバーがコントロールのサイズに収まらない場合に備えて、TabControl WinFormsオブジェクトにヘッダースクロールコントロールボタンを配置します。また、トリミングされたタブヘッダーをクリックしたときのヘッダーバーのシフトを実装します。

MQL5エキスパートアドバイザーに自動最適化を実装する方法
エキスパートアドバイザー(EA)のためのMQL5の自動最適化のためのステップバイステップガイド。堅牢な最適化ロジック、パラメーター選択のベストプラクティス、バックテストを通じた戦略の再構築方法について解説します。さらに、ウォークフォワード最適化などの高レベルな手法を紹介し、取引アプローチの強化を目指します。

ニューラルネットワークが簡単に(第28部):方策勾配アルゴリズム
強化学習法の研究を続けます。前回は、Deep Q-Learning手法に触れました。この手法では、特定の状況下でとった行動に応じて、これから得られる報酬を予測するようにモデルを訓練します。そして、方策と期待される報酬に応じた行動がとられます。ただし、Q関数を近似的に求めることは必ずしも可能ではありません。その近似が望ましい結果を生み出さないこともあります。このような場合、効用関数ではなく、行動の直接的な方針(戦略)に対して、近似的な手法が適用されます。その1つが方策勾配です。

キャンバスベースのインジケーター:チャネル内を透明にする
この記事では、標準ライブラリのCCanvasクラスを使用して描画されるカスタムインジケーターを作成して、座標変換のチャートプロパティを確認する方法を紹介します。特に、2本の線の間の領域を透明にする必要があるインジケーターに取り組みます。

MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第4回):三角移動平均 — 指標シグナル
この記事の多通貨エキスパートアドバイザー(EA)は、1つの銘柄チャートからのみ複数の銘柄ペアの取引(注文を出す、注文を決済する、トレーリングストップロスとトレーリングプロフィットなどで注文を管理するなど)ができるEAまたは自動売買ロボットです。今回は、多時間枠または単一時間枠の「三角移動平均」という1つの指標のみを使用します。


DoEasyライブラリのグラフィックス(第90部): 標準グラフィカルオブジェクトのイベント基本機能
本稿では、標準のグラフィカルオブジェクトイベントを追跡するための基本的な機能を実装します。グラフィカルオブジェクトのダブルクリックイベントから始めます。

データサイエンスと機械学習(第17回):木の中のお金?外国為替取引におけるランダムフォレストの芸術と科学
金融情勢を解読する際の芸術性と正確性の融合についてガイドします。アルゴリズム錬金術の秘密を発見してください。ランダムフォレストがデータを予測能力に変換する方法を明らかにし、株式市場の複雑な地形をナビゲートするための独自の視点を提供します。金融の魔術の核心に触れ、市場の動向を形作り、収益の機会を開拓するランダムフォレストの役割を解き明かす旅にご参加ください。

古典的な戦略をPythonで再構築する:MAクロスオーバー
この記事では、古典的な移動平均クロスオーバー戦略を再検討し、その現在の有効性を評価します。開始以来の経過時間を考慮して、AI がこの伝統的な取引戦略にもたらす可能性のある機能強化について検討します。AI技術を取り入れることで、高度な予測能力を活用し、取引のエントリとエグジットのポイントを最適化し、さまざまな市場環境に適応し、従来のアプローチと比較して全体的なパフォーマンスを向上させる可能性があることを目指します。

知っておくべきMQL5ウィザードのテクニック(第02回):コホネンマップ
この連載では、MQL5ウィザードがトレーダーの主力であるべきことを示します。なぜでしょうか。MQL5ウィザードを使用すれば、新しいアイデアを組み立てることで時間を節約できるだけでなく、コーディングの重複によるミスを大幅に減らすことができるため、最終的に、取引の哲学のいくつかの重要な分野にエネルギーを注ぐことができるからです。

リプレイシステムの開発(第58回):サービスへの復帰
リプレイ/シミュレーターサービスの開発と改良を一時中断していましたが、再開することにしました。ターミナルグローバルのようなリソースの使用をやめたため、いくつかの部分を完全に再構築しなければなりません。ご心配なく。このプロセスを詳細に説明することで、誰もが私たちのサービスの進展についていけるようにします。

MQL5行列を使用した誤差逆伝播法によるニューラルネットワーク
この記事では、行列を使用してMQL5で誤差逆伝播法(バックプロパゲーション)アルゴリズムを適用する理論と実践について説明します。スクリプト、インジケータ、エキスパートアドバイザー(EA)の例とともに、既製のクラスが提示されます。

エキスパートアドバイザー(EA)に指標を追加するための既製のテンプレート(第1部):オシレーター
この記事では、オシレーターカテゴリから標準的な指標を検討します。パラメータの宣言と設定、指標の初期化と初期化解除、EAの指標バッファからのデータとシグナルの受信など、EAですぐに使用できるテンプレートを作成します。

モデル解釈をマスターする:機械学習モデルからより深い洞察を得る
機械学習は複雑で、経験を問わず誰にとってもやりがいのある分野です。この記事では、構築されたモデルを動かす内部メカニズムに深く潜り込み、複雑な特徴、予測、そしてインパクトのある決断の世界を探求し、複雑さを解きほぐし、モデルの解釈をしっかりと把握します。トレードオフをナビゲートし、予測を強化し、確実な意思決定をおこないながら特徴の重要性をランク付けする技術を学びます。この必読書は、機械学習モデルからより多くのパフォーマンスを引き出し、機械学習手法を採用することでより多くの価値を引き出すのに役立ちます。

スマートマネーコンセプト(BOS)とRSI指標をEAに統合する方法
市場構造に基づいた情報に基づく自動売買の意思決定を可能にするためには、スマートマネーコンセプト(Break Of Structure: BOS)とRSI指標の組み合わせが有効です。

経済予測:Pythonの可能性を探る
世界銀行の経済データは、将来の動向を予測するためにどのように活用できるのでしょうか。そして、AIモデルと経済学を組み合わせることで、どのようなことが可能になるのでしょうか。


母集団最適化アルゴリズム
最適化アルゴリズム(OA)の分類についての入門記事です。この記事では、OAを比較するためのテストスタンド(関数群)を作成し、広く知られたアルゴリズムの中から最も普遍的なものを特定することを試みています。

母集団最適化アルゴリズム:Shuffled Frog-Leaping (SFL) アルゴリズム
本稿では、Shuffled Frog-Leaping (SFL)アルゴリズムの詳細な説明と、最適化問題を解く上でのその能力を紹介します。SFLアルゴリズムは、自然環境におけるカエルの行動から着想を得ており、関数最適化への新しいアプローチを提供します。SFLアルゴリズムは、効率的で柔軟なツールであり、様々な種類のデータを処理し、最適解を得ることができます。


DoEasyライブラリのグラフィックス(第77部): 影オブジェクトクラス
本稿では、グラフィック要素オブジェクトの子孫である 影オブジェクトのクラスを作成し、オブジェクトの背景をグラデーションで塗りつぶす機能を追加します。


DoEasyライブラリのグラフィックス(第80部): 「幾何学的アニメーションフレーム」オブジェクトクラス
本稿では、前の記事のクラスのコードを最適化し、指定された数の頂点を持つ正多角形を描画するための幾何学的アニメーションフレームオブジェクトクラスを作成します。

母集団最適化アルゴリズム:モンキーアルゴリズム(MA)
今回は、最適化アルゴリズムであるモンキーアルゴリズム(MA、Monkey Algorithm)について考えてみたいと思います。この動物が難関を乗り越え、最もアクセスしにくい木のてっぺんまで到達する能力が、MAアルゴリズムのアイデアの基礎となりました。

ニューラルネットワークが簡単に(第49回):Soft Actor-Critic
連続行動空間の問題を解決するための強化学習アルゴリズムについての議論を続けます。この記事では、Soft Actor-Critic (SAC)アルゴリズムについて説明します。SACの主な利点は、期待される報酬を最大化するだけでなく、行動のエントロピー(多様性)を最大化する最適な方策を見つけられることです。

データサイエンスと機械学習(第18回):市場複雑性を極める戦い - 打ち切りSVD v.s. NMF
打ち切り特異値分解(Truncated SVD)と非負行列因子分解(NMF)は次元削減技法です。両者とも、データ主導の取引戦略を形成する上で重要な役割を果たしています。次元削減、洞察の解明、定量分析の最適化など、複雑な金融市場をナビゲートするための情報満載のアプローチをご覧ください。

PythonとMQL5を使用して初めてのグラスボックスモデルを作る
機械学習モデルの解釈は難しく、このような高度なテクニックを使用して何らかの価値を得たいのであれば、モデルが予想から外れる理由を理解することが重要です。モデルの内部構造に対する包括的な洞察がなければ、モデルのパフォーマンスを低下させるバグを発見できないことがあります。予測できない機能のエンジニアリングに時間を浪費し、長期的にはモデルのパワーを十分に活用できない危険性があります。幸いなことに、モデルの内部で何が起こっているかを正確に見ることができる、洗練され、よく整備されたオールインワンソリューションがあります。

リプレイシステムの開発—市場シミュレーション(第5回):プレビューの追加
現実的で利用しやすい方法で市場リプレイシステムを実装する方法を開発することができたので、プロジェクトを続けて、リプレイの動作を改善するためのデータを追加してみましょう。


DoEasyライブラリでの価格(第60部): 銘柄ティックデータのシリーズリスト
本稿では、単一銘柄のティックデータを格納するためのリストを作成し、EAでの必要なデータの作成と取得を確認します。さらに、使用される銘柄ごとの個別のティックデータリストでティックデータのコレクションを構成します。

データサイエンスと機械学習(第19回):AdaBoostでAIモデルをパワーアップ
AdaBoostは、AIモデルのパフォーマンスを向上させるために設計された強力なブースティングアルゴリズムです。AdaBoostはAdaptive Boostingの略で、弱い学習機をシームレスに統合し、その集合的な予測力を強化する洗練されたアンサンブル学習技法です。

初心者のためのMQL5におけるファンダメンタル分析とテクニカル分析戦略の組み合わせ
この記事では、トレンドフォローとファンダメンタル分析の原則を1つのエキスパートアドバイザー(EA)にシームレスに統合し、より強固な取引戦略を構築する方法について説明します。MQL5を活用して、誰でも簡単にカスタマイズされた取引アルゴリズムを作成できることを紹介します。

MQL5の圏論(第5回)等化子
圏論は、数学の多様かつ拡大を続ける分野であり、最近になってMQL5コミュニティである程度取り上げられるようになりました。この連載では、その概念と原理のいくつかを探索して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。

データサイエンスと機械学習—ニューラルネットワーク(第02回):フィードフォワードNNアーキテクチャの設計
フィードフォワード(予測制御)ニューラルネットワークについて説明する前に、少し説明しておくことがあって、設計もその1つです。入力、隠れ層の数、および各ネットワークのノードに対する柔軟なニューラルネットワークを構築および設計する方法を見てみましょう。