Artículos con ejemplos de programación en el lenguaje MQL5

icon

Le espera una gran variedad de diferentes artículos sobre la creación de indicadores y robots comerciales para la plataforma MetaTrader usando el lenguaje MQL5. Cada artículo va acompañado con los códigos fuente, Usted puede abrir e iniciarlos en el editor MetaEditor de una manera independiente.

Estos artículos serán útiles tanto para los principiantes en el trading automático, como para los operadores experimentados en la programación y el trading. Aquí encontrará no sólo los ejemplos, sino también las nuevas ideas.

Nuevo artículo
últimas | mejores
preview
Desarrollo de un sistema de repetición (Parte 63): Presionando play en el servicio (IV)

Desarrollo de un sistema de repetición (Parte 63): Presionando play en el servicio (IV)

En este archivo, resolveremos por fin los problemas de simulación de los ticks en una barra de un minuto, de manera que puedan coexistir con ticks reales. De esta manera, evitaremos enfrentarnos a problemas en el futuro. El contenido expuesto aquí tiene como único objetivo la didáctica. En ningún caso debe interpretarse como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
preview
Modificaciones más notables del algoritmo de búsqueda cooperativa artificial (Artificial Cooperative Search, ACSm)

Modificaciones más notables del algoritmo de búsqueda cooperativa artificial (Artificial Cooperative Search, ACSm)

Aquí consideraremos la evolución del algoritmo ACS: tres modificaciones destinadas a mejorar las características de convergencia y la eficiencia del algoritmo. Transformación de uno de los principales algoritmos de optimización. De las modificaciones matriciales a los planteamientos revolucionarios en materia de formación de la población.
preview
Desarrollo de un sistema de repetición (Parte 62): Presionando play en el servicio (III)

Desarrollo de un sistema de repetición (Parte 62): Presionando play en el servicio (III)

En este artículo comenzaremos a abordar el problema del exceso de ticks, que puede afectar a la aplicación cuando usamos datos reales. Este exceso complica muchas veces la correcta temporización necesaria para construir la barra de un minuto dentro de la ventana adecuada.
preview
Desarrollo de un sistema de repetición (Parte 61): Presionando play en el servicio (II)

Desarrollo de un sistema de repetición (Parte 61): Presionando play en el servicio (II)

En este artículo, analizaremos las modificaciones necesarias para que el sistema de repetición/simulación pueda operar de manera más eficiente y segura. También mostraré algo de interés para quienes deseen aprovechar al máximo el uso de clases. Además, abordaré un problema específico de MQL5 que reduce el rendimiento del código al trabajar con clases y explicaré cómo resolverlo.
preview
Desarrollo de un sistema de repetición (Parte 60): Presionando play en el servicio (I)

Desarrollo de un sistema de repetición (Parte 60): Presionando play en el servicio (I)

Llevamos bastante tiempo trabajando únicamente con los indicadores. Pero ahora ha llegado el momento de hacer que el servicio vuelva a ejecutar su trabajo y podamos ver el gráfico construyéndose con los datos proporcionados. Sin embargo, como no todo es tan simple, será necesario observar para entender lo que nos espera.
preview
Algoritmo de búsqueda cooperativa artificial (Artificial Cooperative Search, ACS)

Algoritmo de búsqueda cooperativa artificial (Artificial Cooperative Search, ACS)

La búsqueda cooperativa artificial (Artificial Cooperative Search, ACS) es un método innovador que utiliza una matriz binaria y múltiples poblaciones dinámicas basadas en relaciones de mutualismo y cooperación para encontrar soluciones óptimas de forma rápida y precisa. El enfoque único de ACS sobre depredadores y presas le permite obtener excelentes resultados en problemas de optimización numérica.
preview
Desarrollo de un sistema de repetición (Parte 59): Un nuevo futuro

Desarrollo de un sistema de repetición (Parte 59): Un nuevo futuro

La correcta comprensión de las cosas nos permite hacer más con menos esfuerzo. En este artículo, explicaré por qué es necesario ajustar la aplicación de la plantilla antes de que el servicio comience a interactuar realmente con el gráfico. Además, ¿qué tal si mejoramos el indicador del mouse para que podamos hacer más cosas con él?
preview
Operar con noticias de manera sencilla (Parte 2): Gestión de riesgos

Operar con noticias de manera sencilla (Parte 2): Gestión de riesgos

En este artículo, se introducirá la herencia en nuestro código anterior. Se implementará un nuevo diseño de base de datos para brindar eficiencia. Además, se creará una clase de gestión de riesgos para abordar los cálculos de volumen.
preview
Aprendiendo MQL5 de principiante a profesional (Parte III): Tipos de datos complejos y archivos de inclusión

Aprendiendo MQL5 de principiante a profesional (Parte III): Tipos de datos complejos y archivos de inclusión

Este artículo es el tercero de una serie de materiales sobre los principales aspectos de la programación en MQL5. Aquí nos encargaremos de tipos de datos complejos que no describimos en el artículo anterior, como estructuras, uniones, clases y el tipo de datos "función". También veremos cómo añadir modularidad a nuestro programa utilizando la directiva #include del preprocesador.
preview
Estrategia de trading del SP500 en MQL5 para principiantes

Estrategia de trading del SP500 en MQL5 para principiantes

Descubra cómo aprovechar MQL5 para pronosticar el S&P 500 con precisión, combinando análisis técnico clásico para lograr mayor estabilidad y algoritmos con principios probados en el tiempo para obtener información sólida del mercado.
preview
Cómo integrar los conceptos de dinero inteligente (Smart Money Concepts, SMC) junto con el indicador RSI en un EA

Cómo integrar los conceptos de dinero inteligente (Smart Money Concepts, SMC) junto con el indicador RSI en un EA

Concepto de dinero inteligente (ruptura de estructura) junto con el indicador RSI para tomar decisiones comerciales automatizadas informadas basadas en la estructura del mercado.
preview
Vectores y valores propios: Análisis exploratorio de datos en MetaTrader 5

Vectores y valores propios: Análisis exploratorio de datos en MetaTrader 5

En este artículo exploramos diferentes formas en que los vectores propios y los valores propios pueden aplicarse en el análisis exploratorio de datos para revelar relaciones únicas en los datos.
preview
Redes neuronales: así de sencillo (Parte 91): Previsión en el dominio de la frecuencia (FreDF)

Redes neuronales: así de sencillo (Parte 91): Previsión en el dominio de la frecuencia (FreDF)

Vamos a continuar con el tema del análisis y la previsión de series temporales en el dominio de la frecuencia. En este artículo, introduciremos un nuevo método de predicción en el dominio de la frecuencia que puede añadirse a muchos de los algoritmos que hemos estudiado anteriormente.
preview
Algoritmo de cerradura de código (Сode Lock Algorithm, CLA)

Algoritmo de cerradura de código (Сode Lock Algorithm, CLA)

En este artículo repensaremos las cerraduras de código, transformándolas de mecanismos de protección en herramientas para resolver problemas complejos de optimización. Descubra el mundo de las cerraduras de código, no como simples dispositivos de seguridad, sino como inspiración para un nuevo enfoque de la optimización. Hoy crearemos toda una población de "cerraduras" en la que cada cerradura representará una solución única a un problema. A continuación, desarrollaremos un algoritmo que "forzará" estas cerraduras y hallará soluciones óptimas en ámbitos que van desde el aprendizaje automático hasta el desarrollo de sistemas comerciales.
preview
Análisis de sentimientos y aprendizaje profundo para operar con EA y backtesting con Python

Análisis de sentimientos y aprendizaje profundo para operar con EA y backtesting con Python

En este artículo, presentaremos un análisis de sentimiento y los modelos ONNX con Python para ser utilizados en un asesor experto. Un script ejecuta un modelo ONNX entrenado a partir de TensorFlow para predicciones de aprendizaje profundo, mientras que otro obtiene titulares de noticias y cuantifica el sentimiento utilizando IA.
preview
Cómo crear cualquier tipo de Trailing Stop y conectarlo a un asesor experto

Cómo crear cualquier tipo de Trailing Stop y conectarlo a un asesor experto

En este artículo, veremos las clases necesarias para crear fácilmente varios trailings. Asimismo, aprenderemos cómo conectar un trailing stop a cualquier EA.
preview
Algoritmo de cola de cometa (Comet Tail Algorithm, CTA)

Algoritmo de cola de cometa (Comet Tail Algorithm, CTA)

En este artículo, analizaremos un nuevo algoritmo de optimización de autor, el CTA (Comet Tail Algorithm), que se inspira en objetos espaciales únicos: los cometas y sus impresionantes colas que se forman al acercarse al Sol. Este algoritmo se basa en el concepto del movimiento de los cometas y sus colas, y está diseñado para encontrar soluciones óptimas en problemas de optimización.
preview
Algoritmo de evolución del caparazón de tortuga (Turtle Shell Evolution Algorithm, TSEA)

Algoritmo de evolución del caparazón de tortuga (Turtle Shell Evolution Algorithm, TSEA)

Hoy hablaremos sobre un algoritmo de optimización único inspirado en la evolución del caparazón de las tortugas. El algoritmo TSEA emula la formación gradual de los sectores de piel queratinizada que representan soluciones óptimas a un problema. Las mejores soluciones se vuelven más "duras" y se encuentran más cerca de la superficie exterior, mientras que las menos exitosas permanecen "blandas" y se hallan en el interior. El algoritmo utiliza la clusterización de soluciones según su calidad y distancia, lo cual permite conservar las opciones menos acertadas y aporta flexibilidad y adaptabilidad.
preview
Cómo añadir Trailing Stop según el indicador Parabolic SAR

Cómo añadir Trailing Stop según el indicador Parabolic SAR

Al crear una estrategia comercial, debemos probar una amplia variedad de stops de protección. Y aquí surge la idea del ajuste dinámico del nivel de Stop Loss siguiendo el precio. El mejor candidato en este punto es el indicador Parabolic SAR, resulta difícil pensar en algo más simple y claro.
preview
Optimización automatizada de parámetros para estrategias de negociación con Python y MQL5

Optimización automatizada de parámetros para estrategias de negociación con Python y MQL5

Existen varios tipos de algoritmos para la autooptimización de estrategias y parámetros de negociación. Estos algoritmos se utilizan para mejorar automáticamente las estrategias de negociación basándose en datos históricos y actuales del mercado. En este artículo veremos uno de ellos con ejemplos en Python y MQL5.
preview
Desarrollo de Sistemas Avanzados de Trading ICT: Implementación de Order Blocks en un Indicador

Desarrollo de Sistemas Avanzados de Trading ICT: Implementación de Order Blocks en un Indicador

En este artículo, aprenderemos cómo crear un indicador que detecte, dibuje y emita alertas sobre la mitigación de Order Blocks. Exploraremos en detalle cómo identificar estos bloques en el gráfico, establecer alertas precisas y visualizar su posición con rectángulos para tener una mejor comprensión del comportamiento del precio. Este indicador será una herramienta clave para quienes siguen la metodología Smart Money Concepts e Inner Circle Trader.
preview
Características del Wizard MQL5 que debe conocer (Parte 16): Método de componentes principales con vectores propios

Características del Wizard MQL5 que debe conocer (Parte 16): Método de componentes principales con vectores propios

En este artículo analizaremos el método de componentes principales, una técnica de reducción de la dimensionalidad para el análisis de datos, y cómo podemos aplicar este utilizando valores propios y vectores. Como siempre, intentaremos desarrollar un prototipo de la clase de señales del asesor experto que se pueda utilizar en el Wizard MQL5.
preview
Creación de predicciones de series temporales mediante redes neuronales LSTM: Normalización del precio y tokenización del tiempo

Creación de predicciones de series temporales mediante redes neuronales LSTM: Normalización del precio y tokenización del tiempo

Este artículo describe una estrategia simple para normalizar los datos del mercado utilizando el rango diario y entrenar una red neuronal para mejorar las predicciones del mercado. Los modelos desarrollados pueden utilizarse junto con un marco de análisis técnico existente o de forma independiente para ayudar a predecir la dirección general del mercado. Cualquier analista técnico puede perfeccionar aún más el marco descrito en este artículo para desarrollar modelos adecuados tanto para estrategias comerciales manuales como automatizadas.
preview
Kit de herramientas de negociación MQL5 (Parte 1): Desarrollo de una biblioteca EX5 de gestión de posiciones

Kit de herramientas de negociación MQL5 (Parte 1): Desarrollo de una biblioteca EX5 de gestión de posiciones

Aprenda a crear un conjunto de herramientas de desarrollador para gestionar diversas operaciones de posición con MQL5. En este artículo, demostraré cómo crear una librería de funciones (ex5) que realizarán operaciones de gestión de posiciones simples a avanzadas, incluyendo el manejo automático y la notificación de los diferentes errores que surgen al tratar con tareas de gestión de posiciones con MQL5.
preview
Obtenga una ventaja sobre cualquier mercado (Parte II): Predicción de indicadores técnicos

Obtenga una ventaja sobre cualquier mercado (Parte II): Predicción de indicadores técnicos

¿Sabía que podemos obtener más precisión pronosticando ciertos indicadores técnicos que prediciendo el precio subyacente de un símbolo negociado? Únase a nosotros para explorar cómo aprovechar esta información para mejorar las estrategias de negociación.
preview
Estrategia de Bill Williams con y sin otros indicadores y predicciones

Estrategia de Bill Williams con y sin otros indicadores y predicciones

En este artículo, analizaremos una de las famosas estrategias de Bill Williams, la analizaremos e intentaremos mejorarla con otros indicadores y predicciones.
preview
Añadimos un LLM personalizado a un robot comercial (Parte 3): Entrenando tu propio LLM utilizando la CPU

Añadimos un LLM personalizado a un robot comercial (Parte 3): Entrenando tu propio LLM utilizando la CPU

Con el rápido desarrollo de la inteligencia artificial actual, los modelos de lenguaje (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar LLM potentes en nuestro trading algorítmico. Para la mayoría de las personas, es difícil ajustar estos poderosos modelos según sus necesidades, implementarlos localmente y luego aplicarlos al comercio algorítmico. Esta serie de artículos abordará paso a paso cómo lograr este objetivo.
preview
Algoritmo de optimización Brain Storm - Brain Storm Optimization (Parte II): Multimodalidad

Algoritmo de optimización Brain Storm - Brain Storm Optimization (Parte II): Multimodalidad

En la segunda parte del artículo pasaremos a la aplicación práctica del algoritmo BSO, realizaremos tests con funciones de prueba y compararemos la eficacia de BSO con otros métodos de optimización.
preview
Reimaginando las estrategias clásicas: El petróleo

Reimaginando las estrategias clásicas: El petróleo

En este artículo, revisamos una estrategia clásica de negociación de crudo con el objetivo de mejorarla aprovechando algoritmos de aprendizaje automático supervisado. Construiremos un modelo de mínimos cuadrados para predecir los futuros precios del crudo Brent basándonos en el diferencial entre los precios del crudo Brent y del crudo WTI. Nuestro objetivo es identificar un indicador adelantado de futuros cambios en los precios del Brent.
preview
Algoritmo de optimización Brain Storm - Brain Storm Optimization (Parte I): Clusterización

Algoritmo de optimización Brain Storm - Brain Storm Optimization (Parte I): Clusterización

En este artículo analizaremos un innovador método de optimización denominado BSO (Brain Storm Optimization), inspirado en el fenómeno natural de la tormenta de ideas. También discutiremos un nuevo enfoque de resolución de tareas de optimización multimodales que utiliza el método BSO y nos permite encontrar múltiples soluciones óptimas sin tener que determinar de antemano el número de subpoblaciones. En este artículo, también analizaremos los métodos de clusterización K-Means y K-Means++.
preview
Algoritmos de optimización de la población: Algoritmo de enjambre de aves (Bird Swarm Algorithm, BSA)

Algoritmos de optimización de la población: Algoritmo de enjambre de aves (Bird Swarm Algorithm, BSA)

El artículo analiza un algoritmo BSA basado en el comportamiento de las aves, que se inspira en las interacciones colectivas de bandadas de aves en la naturaleza. Las diferentes estrategias de búsqueda de individuos en el BSA, que incluyen el cambio entre el comportamiento de vuelo, la vigilancia y la búsqueda de alimento, hacen que este algoritmo sea multidimensional. El algoritmo usa los principios del comportamiento de las bandadas, la comunicación, la adaptabilidad, el liderazgo y el seguimiento de las aves para encontrar con eficacia soluciones óptimas.
preview
Algoritmos de optimización de la población: Algoritmo Boids, o algoritmo de comportamiento de bandada (Algoritmo Boids, Boids)

Algoritmos de optimización de la población: Algoritmo Boids, o algoritmo de comportamiento de bandada (Algoritmo Boids, Boids)

En este artículo, realizamos un estudio del algoritmo Boids, que se basa en ejemplos únicos del comportamiento de enjambre o bandada de animales. El algoritmo Boids, a su vez, ha servido de base para la creación de toda una clase de algoritmos agrupados bajo el nombre de "inteligencia de enjambre".
preview
Características del Wizard MQL5 que debe conocer (Parte 18): Búsqueda de arquitectura neural con vectores propios

Características del Wizard MQL5 que debe conocer (Parte 18): Búsqueda de arquitectura neural con vectores propios

Búsqueda de arquitectura neuronal, un enfoque automatizado para determinar la configuración ideal de la red neuronal, puede ser una ventaja cuando se enfrentan muchas opciones y grandes conjuntos de datos de prueba. Analizamos cómo, cuando se combinan vectores propios, este proceso puede resultar aún más eficiente.
preview
Un algoritmo de selección de características que utiliza aprendizaje basado en energía en MQL5 puro

Un algoritmo de selección de características que utiliza aprendizaje basado en energía en MQL5 puro

En este artículo presentamos la implementación de un algoritmo de selección de características descrito en un artículo académico titulado "FREL: Un algoritmo de selección de características estable", llamado Ponderación de características como aprendizaje regularizado basado en energía.
preview
Factorización de matriсes: un modelado más práctico

Factorización de matriсes: un modelado más práctico

Es muy probable que no te hayas dado cuenta de que el modelado de las matrices era un tanto extraño, ya que no se indicaban filas y columnas, solo columnas. Esto resulta muy raro al leer un código que realiza factorizaciones de matrices. Si esperabas ver las filas y columnas indicadas, podrías haberte sentido bastante confundido al intentar implementar la factorización. Además, esa forma de modelar las matrices no es, ni de cerca, la mejor manera. Esto se debe a que, cuando modelamos matrices de esa forma, nos enfrentamos a ciertas limitaciones que nos obligan a usar otras técnicas o funciones que no serían necesarias si el modelado se realiza de manera más adecuada.
preview
DoEasy. Funciones de servicio (Parte 2): Patrón "Barra interior"

DoEasy. Funciones de servicio (Parte 2): Patrón "Barra interior"

En este artículo, continuaremos el análisis de los patrones de precios en la biblioteca DoEasy. Así, crearemos la clase de patrón "Barra interior" de las formaciones Price Action.
preview
Algoritmos de optimización de la población: Algoritmo de optimización de ballenas (Whale Optimization Algorithm, WOA)

Algoritmos de optimización de la población: Algoritmo de optimización de ballenas (Whale Optimization Algorithm, WOA)

El algoritmo de optimización de ballenas (WOA) es un algoritmo metaheurístico inspirado en el comportamiento y las estrategias de caza de las ballenas jorobadas. La idea básica del WOA es imitar el método de alimentación denominado "red de burbujas", en el que las ballenas crean burbujas alrededor de la presa para atacarla después en espiral.
preview
Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 7): Señales de los indicadores ZigZag y Awesome Oscillator

Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 7): Señales de los indicadores ZigZag y Awesome Oscillator

En este artículo, entenderemos por EA multidivisa un EA o robot comercial que utiliza indicadores ZigZag y Awesome Oscillator que filtran mutuamente sus señales.
preview
Características del Wizard MQL5 que debe conocer (Parte 17): Negociación con multidivisas

Características del Wizard MQL5 que debe conocer (Parte 17): Negociación con multidivisas

La negociación con varias divisas no está disponible por defecto cuando se crea un asesor experto mediante el asistente. Examinamos dos posibles trucos que los operadores pueden utilizar para poner a prueba sus ideas con más de un símbolo a la vez.
preview
El método de manejo de datos en grupo: implementación del algoritmo combinatorio en MQL5

El método de manejo de datos en grupo: implementación del algoritmo combinatorio en MQL5

En este artículo continuamos nuestra exploración de la familia de algoritmos del método de manejo de datos en grupo, con la implementación del algoritmo combinatorio junto con su encarnación refinada, el algoritmo combinatorio selectivo en MQL5.