Artículos con ejemplos de programación de robots comerciales en el lenguaje MQL5

icon

En el ámbito del trading automático los Asesores Expertos es la cima de la programación y objetivo deseable de cada desarrollador. Usted puede escribir su propio Asesor Experto utilizando los artículos de esta sección. Paso a paso los principiantes podrán pasar todas las fases de creación, depuración y simulación de los sistemas automáticos de trading.

Los artículos no sólo enseñarán a programar en el lenguaje MQL5, sino mostrarán cómo implementar cualquier idea y técnica comercial. Usted conocerá cómo programar el Trailing Stop, cómo realizar la gestión del capital, cómo obtener el valor del indicador y muchas cosas más.

Nuevo artículo
últimas | mejores
preview
Desarrollamos un asesor experto multidivisa (Parte 14): Cambio de volumen adaptable en el gestor de riesgos

Desarrollamos un asesor experto multidivisa (Parte 14): Cambio de volumen adaptable en el gestor de riesgos

El gestor de riesgos que hemos desarrollado en los últimos artículos solo contiene funciones básicas. Hoy trataremos de analizar sus posibles formas de desarrollo, lo que nos permitirá aumentar los resultados comerciales sin interferir con la lógica de las estrategias de negociación.
preview
Preparación de indicadores de símbolo/periodo múltiple

Preparación de indicadores de símbolo/periodo múltiple

En este artículo analizaremos los principios de la creación de los indicadores de símbolo/periodo múltiple y la obtención de datos de ellos en asesores e indicadores. Asimismo, veremos los principales matices de uso de los indicadores múltiples en asesores e indicadores, y su representación a través de los búferes del indicador personalizado.
preview
Redes neuronales: así de sencillo (Parte 45): Entrenando habilidades de exploración de estados

Redes neuronales: así de sencillo (Parte 45): Entrenando habilidades de exploración de estados

El entrenamiento de habilidades útiles sin una función de recompensa explícita es uno de los principales desafíos del aprendizaje por refuerzo jerárquico. Ya nos hemos familiarizado antes con dos algoritmos para resolver este problema, pero el tema de la exploración del entorno sigue abierto. En este artículo, veremos un enfoque distinto en el entrenamiento de habilidades, cuyo uso dependerá directamente del estado actual del sistema.
preview
Desarrollamos un Asesor Experto multidivisas (Parte 2): Transición a posiciones virtuales de estrategias comerciales

Desarrollamos un Asesor Experto multidivisas (Parte 2): Transición a posiciones virtuales de estrategias comerciales

Hoy continuaremos con el desarrollo de un asesor multidivisa con varias estrategias funcionando en paralelo. Intentaremos transferir todo el trabajo relacionado con la apertura de posiciones de mercado desde el nivel de las estrategias al nivel de un experto que gestiona estas. Las propias estrategias solo negociarán virtualmente, sin abrir posiciones de mercado.
Trabajando con los precios en la biblioteca DoEasy (Parte 60): Lista de serie de datos de tick del símbolo
Trabajando con los precios en la biblioteca DoEasy (Parte 60): Lista de serie de datos de tick del símbolo

Trabajando con los precios en la biblioteca DoEasy (Parte 60): Lista de serie de datos de tick del símbolo

En este artículo, vamos a crear una lista para almacenar los datos de tick del símbolo único, después, verificaremos su creación y obtención de los datos requeridos en el Asesor Experto. Dichas listas —siendo aplicada cada una de ellas para cada símbolo usado— van a componer luego la colección de datos de tick.
preview
Desarrollamos un Asesor Experto multidivisas (Parte 5): Tamaños de posición variables

Desarrollamos un Asesor Experto multidivisas (Parte 5): Tamaños de posición variables

En las partes anteriores, el Asesor Experto (EA) en desarrollo sólo podía utilizar un tamaño de posición fijo para operar. Esto es aceptable para las pruebas, pero no es aconsejable cuando se opera en una cuenta real. Hagamos posible el comercio utilizando tamaños de posición variables.
preview
Ejemplo de nuevo Indicador y LSTM condicional

Ejemplo de nuevo Indicador y LSTM condicional

Este artículo explora el desarrollo de un Asesor Experto (Expert Advisor, EA) para trading automatizado que combina el análisis técnico con predicciones de aprendizaje profundo.
preview
Múltiples indicadores en un gráfico (Parte 06): Convirtamos el MetaTrader 5 en un sistema RAD (II)

Múltiples indicadores en un gráfico (Parte 06): Convirtamos el MetaTrader 5 en un sistema RAD (II)

En el artículo anterior mostré cómo crear un Chart Trade utilizando los objetos de MetaTrader 5, por medio de la conversión de la plataforma en un sistema RAD. El sistema funciona muy bien, y creo que muchos han pensado en crear una librería para tener cada vez más funcionalidades en el sistema propuesto, y así lograr desarrollar un EA que sea más intuitivo a la vez que tenga una interfaz más agradable y sencilla de utilizar.
preview
Experimentos con redes neuronales (Parte 7): Transmitimos indicadores

Experimentos con redes neuronales (Parte 7): Transmitimos indicadores

Ejemplos de transmisión de indicadores a un perceptrón. En el artículo ofreceremos conceptos generales y presentaremos un asesor listo para usar muy simple, así como los resultados de su optimización y sus pruebas forward.
preview
Estrategia de negociación de órdenes en cascada basada en cruces de EMA para MetaTrader 5

Estrategia de negociación de órdenes en cascada basada en cruces de EMA para MetaTrader 5

El artículo guía en la demostración de un algoritmo automatizado basado en cruces de EMA para MetaTrader 5. Información detallada sobre todos los aspectos de la demostración de un Asesor Experto en MQL5 y su prueba en MetaTrader 5, desde el análisis del comportamiento del rango de precios hasta la gestión de riesgos.
preview
Redes neuronales: así de sencillo (Parte 57): Stochastic Marginal Actor-Critic (SMAC)

Redes neuronales: así de sencillo (Parte 57): Stochastic Marginal Actor-Critic (SMAC)

Hoy le proponemos introducir un algoritmo bastante nuevo, el Stochastic Marginal Actor-Critic (SMAC), que permite la construcción de políticas de variable latente dentro de un marco de maximización de la entropía.
preview
Redes neuronales: así de sencillo (Parte 67): Utilizamos la experiencia adquirida para afrontar nuevos retos

Redes neuronales: así de sencillo (Parte 67): Utilizamos la experiencia adquirida para afrontar nuevos retos

En este artículo, seguiremos hablando de los métodos de recopilación de datos en una muestra de entrenamiento. Obviamente, en el proceso de entrenamiento será necesaria una interacción constante con el entorno, aunque con frecuencia se dan situaciones diferentes.
preview
Teoría de categorías en MQL5 (Parte 11): Grafos

Teoría de categorías en MQL5 (Parte 11): Grafos

El presente artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5. Aquí veremos cómo podemos integrar la teoría de grafos con los monoides y otras estructuras de datos al desarrollar una estrategia de cierre del sistema comercial.
preview
Creación de un asesor experto MQL5 basado en la estrategia de ruptura del rango diario (Daily Range Breakout)

Creación de un asesor experto MQL5 basado en la estrategia de ruptura del rango diario (Daily Range Breakout)

En este artículo, creamos un Asesor Experto MQL5 basado en la estrategia de ruptura del rango diario (Daily Range Breakout). Cubrimos los conceptos clave de la estrategia, diseñamos el plano del EA e implementamos la lógica de ruptura en MQL5. Al final, exploramos técnicas para realizar pruebas retrospectivas y optimizar el EA con el fin de maximizar su eficacia.
preview
Desarrollando un EA comercial desde cero (Parte 13): Times And Trade (II)

Desarrollando un EA comercial desde cero (Parte 13): Times And Trade (II)

Hoy vamos a construir la segunda parte del sistema Times & Trade para analizar el mercado. En el artículo anterior Times & Trade ( I ) presenté un sistema alternativo para organizar un gráfico de manera que tengamos un indicador que nos permita interpretar las operaciones que se han ejecutado en el mercado lo más rápido posible.
preview
Redes neuronales: así de sencillo (Parte 59): Dicotomía de control (DoC)

Redes neuronales: así de sencillo (Parte 59): Dicotomía de control (DoC)

En el artículo anterior nos familiarizamos con el transformador de decisión. Sin embargo, el complejo entorno estocástico del mercado de divisas no nos permitió aprovechar plenamente el potencial del método presentado. Hoy veremos un algoritmo que tiene como objetivo mejorar el rendimiento de los algoritmos en entornos estocásticos.
preview
Previsión y apertura de órdenes basadas en aprendizaje profundo (Deep Learning) con el paquete Python MetaTrader 5 y el archivo modelo ONNX

Previsión y apertura de órdenes basadas en aprendizaje profundo (Deep Learning) con el paquete Python MetaTrader 5 y el archivo modelo ONNX

El proyecto consiste en utilizar Python para realizar previsiones basadas en el aprendizaje profundo en los mercados financieros. Exploraremos los entresijos de la comprobación del rendimiento del modelo utilizando métricas clave como el error medio absoluto (MAE, Mean Absolute Error), el error medio cuadrático (MSE, Mean Squared Error) y R-cuadrado (R2), y aprenderemos a envolverlo todo en un ejecutable. También haremos un fichero modelo ONNX con su EA.
preview
Redes neuronales: así de sencillo (Parte 22): Aprendizaje no supervisado de modelos recurrentes

Redes neuronales: así de sencillo (Parte 22): Aprendizaje no supervisado de modelos recurrentes

Continuamos analizando los algoritmos de aprendizaje no supervisado. Hoy hablaremos sobre el uso de autocodificadores en el entrenamiento de modelos recurrentes.
preview
Estimamos la rentabilidad futura usando intervalos de confianza

Estimamos la rentabilidad futura usando intervalos de confianza

En este artículo, nos adentraremos en la aplicación de técnicas de bootstrapping como forma de evaluar la rentabilidad futura de una estrategia automatizada.
preview
Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 3): Prefijos/sufijos de símbolos y sesión comercial

Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 3): Prefijos/sufijos de símbolos y sesión comercial

Últimamente, he recibido comentarios de varios compañeros tráders sobre cómo usar el asesor multidivisa que estamos analizando con brókeres que utilizan prefijos y/o sufijos con nombres de símbolos, así como sobre la forma de implementar zonas horarias comerciales o sesiones comerciales en el asesor.
preview
Redes neuronales: así de sencillo (Parte 24): Mejorando la herramienta para el Transfer Learning

Redes neuronales: así de sencillo (Parte 24): Mejorando la herramienta para el Transfer Learning

En el último artículo, creamos una herramienta capaz de crear y editar arquitecturas de redes neuronales. Hoy querríamos proponerles continuar con el desarrollo de esta herramienta, para lograr que resulte más fácil de usar. En cierto modo, esto se aleja un poco de nuestro tema, pero estará de acuerdo con que la organización del espacio de trabajo desempeña un papel importante en el resultado final.
preview
Análisis de sentimientos y aprendizaje profundo para operar con EA y backtesting con Python

Análisis de sentimientos y aprendizaje profundo para operar con EA y backtesting con Python

En este artículo, presentaremos un análisis de sentimiento y los modelos ONNX con Python para ser utilizados en un asesor experto. Un script ejecuta un modelo ONNX entrenado a partir de TensorFlow para predicciones de aprendizaje profundo, mientras que otro obtiene titulares de noticias y cuantifica el sentimiento utilizando IA.
preview
Redes neuronales: así de sencillo (Parte 23): Creamos una herramienta para el Transfer Learning

Redes neuronales: así de sencillo (Parte 23): Creamos una herramienta para el Transfer Learning

En esta serie de artículos, hemos mencionado el Aprendizaje por Transferencia más de una vez, pero hasta ahora no había sido más que una mención. Le propongo rellenar este vacío y analizar más de cerca el Aprendizaje por Transferencia.
preview
Experimentos con redes neuronales (Parte 4): Patrones

Experimentos con redes neuronales (Parte 4): Patrones

Las redes neuronales lo son todo. Vamos a comprobar en la práctica si esto es así. MetaTrader 5 como herramienta autosuficiente para el uso de redes neuronales en el trading. Una explicación sencilla.
preview
Trabajando con las series temporales en la biblioteca DoEasy (Parte 56): Objeto del indicador personalizado, obtención de datos de parte de los objetos de indicador en la colección

Trabajando con las series temporales en la biblioteca DoEasy (Parte 56): Objeto del indicador personalizado, obtención de datos de parte de los objetos de indicador en la colección

En el presente artículo, vamos a considerar la creación de un objeto del indicador personalizado para usarlo en los asesores expertos. Mejoraremos un poco las clases de la biblioteca y escribiremos los métodos para obtener los datos de parte de los objetos de indicador en los expertos.
preview
Implementación de un algoritmo de trading de negociación rápida utilizando SAR Parabólico (Stop and Reverse, SAR) y Media Móvil Simple (Simple Moving Average, SMA) en MQL5

Implementación de un algoritmo de trading de negociación rápida utilizando SAR Parabólico (Stop and Reverse, SAR) y Media Móvil Simple (Simple Moving Average, SMA) en MQL5

En este artículo, desarrollamos un Asesor Experto de trading de ejecución rápida en MQL5, aprovechando los indicadores SAR Parabólico (Stop and Reverse, SAR) y Media Móvil Simple (Simple Moving Average, SMA) para crear una estrategia de trading reactiva y eficiente. Detallamos la implementación de la estrategia, incluyendo el uso de los indicadores, la generación de señales y el proceso de prueba y optimización.
preview
Redes neuronales: así de sencillo (Parte 36): Modelos relacionales de aprendizaje por refuerzo (Relational Reinforcement Learning)

Redes neuronales: así de sencillo (Parte 36): Modelos relacionales de aprendizaje por refuerzo (Relational Reinforcement Learning)

En los modelos de aprendizaje por refuerzo analizados anteriormente, usamos varias opciones de redes convolucionales que pueden identificar varios objetos en los datos originales. La principal ventaja de las redes convolucionales es su capacidad de identificar objetos independientemente de la ubicación de estos. Al mismo tiempo, las redes convolucionales no siempre son capaces de hacer frente a diversas deformaciones de los objetos y al ruido. Pero estos problemas pueden resolverse usando el modelo relacional.
preview
Redes neuronales: así de sencillo (Parte 87): Segmentación de series temporales

Redes neuronales: así de sencillo (Parte 87): Segmentación de series temporales

La previsión juega un papel esencial en el análisis de series temporales. En este nuevo artículo, hablaremos de las ventajas de la segmentación de series temporales.
preview
Perceptrón multicapa y algoritmo de retropropagación (Parte 3): Integración con el simulador de estrategias - Visión general (I)

Perceptrón multicapa y algoritmo de retropropagación (Parte 3): Integración con el simulador de estrategias - Visión general (I)

El perceptrón multicapa es una evolución del perceptrón simple, capaz de resolver problemas separables no linealmente. Junto con el algoritmo de retropropagación, es posible entrenar eficientemente esta red neuronal. En la tercera parte de la serie sobre el perceptrón multicapa y la retropropagación, mostraremos cómo integrar esta técnica con el simulador de estrategias. Esta integración permitirá utilizar análisis de datos complejos y tomar mejores decisiones para optimizar las estrategias de negociación. En este resumen, analizaremos las ventajas y los retos de la aplicación de esta técnica.
preview
Redes neuronales: así de sencillo (Parte 62): Uso del transformador de decisiones en modelos jerárquicos

Redes neuronales: así de sencillo (Parte 62): Uso del transformador de decisiones en modelos jerárquicos

En artículos recientes, hemos visto varios usos del método Decision Transformer, que permite analizar no solo el estado actual, sino también la trayectoria de los estados anteriores y las acciones realizadas en ellos. En este artículo, veremos una variante del uso de este método en modelos jerárquicos.
preview
Multibot en MetaTrader (Parte II): Plantilla dinámica mejorada

Multibot en MetaTrader (Parte II): Plantilla dinámica mejorada

Desarrollando el tema del artículo anterior sobre el multibot, hemos decidido crear una plantilla más flexible y funcional, que tenga grandes posibilidades, y que se pueda utilizar eficazmente en freelance, además de como base para desarrollar asesores de divisa y periodo múltiple con posibilidad de integración con soluciones externas.
preview
Teoría de categorías en MQL5 (Parte 7): Dominios múltiples, relativos e indexados

Teoría de categorías en MQL5 (Parte 7): Dominios múltiples, relativos e indexados

La teoría de categorías es un apartado diverso y en expansión de las matemáticas, que solo recientemente ha comenzado a ser trabajado por la comunidad MQL5. Esta serie de artículos tiene por objetivo repasar algunos de sus conceptos para crear una biblioteca abierta y seguir usando este maravilloso apartado en la creación de estrategias comerciales.
preview
Redes neuronales: así de sencillo (Parte 43): Dominando las habilidades sin función de recompensa

Redes neuronales: así de sencillo (Parte 43): Dominando las habilidades sin función de recompensa

El problema del aprendizaje por refuerzo reside en la necesidad de definir una función de recompensa, que puede ser compleja o difícil de formalizar. Para resolver esto, se están estudiando enfoques basados en la variedad de acciones y la exploración del entorno que permiten aprender habilidades sin una función de recompensa explícita.
preview
Redes neuronales en el trading: Modelos del espacio de estados

Redes neuronales en el trading: Modelos del espacio de estados

Una gran cantidad de los modelos que hemos revisado hasta ahora se basan en la arquitectura del Transformer. No obstante, pueden resultar ineficientes al trabajar con secuencias largas. En este artículo le propongo familiarizarse con una rama alternativa de pronóstico de series temporales basada en modelos del espacio de estados.
preview
Filtrado y extracción de características en el dominio de la frecuencia

Filtrado y extracción de características en el dominio de la frecuencia

En este artículo, analizaremos la aplicación de filtros digitales a series temporales representadas en el dominio de la frecuencia con el fin de extraer características únicas que puedan resultar útiles para los modelos de predicción.
preview
Cómo crear un diario de operaciones con MetaTrader y Google Sheets

Cómo crear un diario de operaciones con MetaTrader y Google Sheets

Crear un diario de operaciones con MetaTrader y Google Sheets! Aprenderá cómo sincronizar sus datos comerciales a través de HTTP POST y recuperarlos mediante solicitudes HTTP. Al final, tendrás un diario de operaciones que te ayudará a realizar un seguimiento de tus operaciones de manera eficaz y eficiente.
preview
Aprendiendo MQL5 de principiante a profesional (Parte VI): Fundamentos del desarrollo de asesores expertos

Aprendiendo MQL5 de principiante a profesional (Parte VI): Fundamentos del desarrollo de asesores expertos

Este artículo continúa la serie para principiantes. Aquí discutiremos los principios básicos del desarrollo de Asesores Expertos (EAs). Crearemos dos EAs: el primero operará sin indicadores, utilizando órdenes pendientes, y el segundo se basará en el indicador MA estándar, abriendo operaciones al precio actual. Aquí doy por sentado que ya no eres un principiante absoluto y que dominas relativamente bien el material de los artículos anteriores.
preview
Redes neuronales: así de sencillo (Parte 44): Estudiamos las habilidades de forma dinámica

Redes neuronales: así de sencillo (Parte 44): Estudiamos las habilidades de forma dinámica

En el artículo anterior, nos familiarizamos con el método DIAYN, que ofrece un algoritmo para el aprendizaje de diversas habilidades. El uso de las habilidades aprendidas puede aprovecharse en diversas tareas, pero estas habilidades pueden resultar bastante impredecibles, lo cual puede dificultar su uso. En este artículo, analizaremos un algoritmo para el aprendizaje de habilidades predecibles.
preview
Trabajando con las series temporales en la biblioteca DoEasy (Parte 57): Objeto de datos del búfer de indicador

Trabajando con las series temporales en la biblioteca DoEasy (Parte 57): Objeto de datos del búfer de indicador

En este artículo, vamos a desarrollar el objeto que incluirá todos los datos de un búfer de un indicador. Estos objetos serán necesarios para almacenar los datos de serie de los búferes de indicadores, a través de los cuales será posible ordenar y comparar los datos de los búferes de cualquier indicador, así como otros datos parecidos.
preview
Redes neuronales: así de sencillo (Parte 66): Problemática de la exploración en el entrenamiento offline

Redes neuronales: así de sencillo (Parte 66): Problemática de la exploración en el entrenamiento offline

El entrenamiento offline del modelo se realiza sobre los datos de una muestra de entrenamiento previamente preparada. Esto nos ofrecerá una serie de ventajas, pero la información sobre el entorno estará muy comprimida con respecto al tamaño de la muestra de entrenamiento, lo que, a su vez, limitará el alcance del estudio. En este artículo, querríamos familiarizarnos con un método que permite llenar la muestra de entrenamiento con los datos más diversos posibles.