Kit de herramientas de negociación MQL5 (Parte 7): Ampliación de la libreria EX5 de gestión del historial con las funciones de última orden pendiente cancelada
Aprenda a completar la creación del módulo final en la librería History Manager EX5, centrándose en las funciones responsables de gestionar la orden pendiente cancelada más recientemente. Esto le proporcionará las herramientas necesarias para recuperar y almacenar de manera eficiente los detalles clave relacionados con las órdenes pendientes canceladas con MQL5.
Del básico al intermedio: Estructuras (V)
En este artículo, veremos cómo se realiza la sobrecarga de un código estructural. Sé que esto es bastante difícil de entender al principio, sobre todo si es la primera vez que ves esto. Es muy importante que asimiles estos conceptos y entiendas muy bien lo que sucede aquí antes de intentar aventurarte en cosas más complicadas y elaboradas.
Dominando los registros (Parte 2): Formateo de registros
En este artículo, exploraremos cómo crear y aplicar formateadores de registros en la biblioteca. Veremos todo, desde la estructura básica de un formateador hasta ejemplos de implementación práctica. Al finalizar, tendrás el conocimiento necesario para formatear registros dentro de la biblioteca y comprenderás cómo funciona todo detrás de escena.
Mecanismos de compuertas en el aprendizaje en conjuntos
En este artículo, continuamos nuestra exploración de los modelos ensamblados analizando el concepto de compuertas, concretamente cómo pueden ser útiles para combinar los resultados de los modelos con el fin de mejorar la precisión de las predicciones o la generalización de los modelos.
Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte VI): Cómo aprovechar el doble descenso profundo
El aprendizaje automático tradicional enseña a los profesionales a estar atentos para no sobreajustar sus modelos. Sin embargo, esta ideología está siendo cuestionada por nuevos hallazgos publicados por diligentes investigadores de Harvard, quienes han descubierto que lo que parece ser un sobreajuste puede, en algunas circunstancias, ser el resultado de finalizar prematuramente los procedimientos de entrenamiento. Demostraremos cómo podemos utilizar las ideas publicadas en el artículo de investigación para mejorar nuestro uso de la IA en la previsión de retornos del mercado.
ADAM poblacional (Estimación Adaptativa de Momentos)
Este artículo presenta la transformación del conocido y popular método de optimización ADAM basado en gradientes en un algoritmo basado en poblaciones y su modificación con la introducción de individuos híbridos. El nuevo enfoque permite crear agentes que combinen elementos de soluciones exitosas mediante una distribución de probabilidades. Una innovación clave es la generación de poblaciones híbridas que acumulan de forma adaptativa la información de las soluciones más prometedoras, mejorando la eficacia de la búsqueda en espacios multidimensionales complejos.
Dominando los registros (Parte 5): Optimizar el controlador con caché y rotación
Este artículo mejora la biblioteca de registro agregando formateadores en los controladores, la clase CIntervalWatcher para administrar ciclos de ejecución, optimización con almacenamiento en caché y rotación de archivos, pruebas de rendimiento y ejemplos prácticos. Con estas mejoras, aseguramos un sistema de registro eficiente, escalable y adaptable a diferentes escenarios de desarrollo.
Simulación de mercado (Parte 09): Sockets (III)
Este artículo es la continuación del anterior. En él veremos cómo se implementará el Asesor Experto, centrándonos principalmente en cómo debe hacerse el código del servidor. El código del artículo anterior no es suficiente para que las cosas funcionen como deberían, por lo que es necesario profundizar en él. Por esta razón, es necesario que leas ambos artículos para comprender mejor lo que ocurrirá.
Creación de un Panel de administración de operaciones en MQL5 (Parte V): Autenticación de dos factores (2FA)
Hoy discutiremos cómo mejorar la seguridad del Panel de administrador comercial que actualmente se encuentra en desarrollo. Exploraremos cómo implementar MQL5 en una nueva estrategia de seguridad, integrando la API de Telegram para la autenticación de dos factores (2FA). Esta discusión proporcionará información valiosa sobre la aplicación de MQL5 para reforzar las medidas de seguridad. Además, examinaremos la función MathRand, centrándonos en su funcionalidad y cómo se puede utilizar de forma efectiva dentro de nuestro marco de seguridad. ¡Sigue leyendo para descubrir más!
Pruebas de robustez en asesores expertos
En el desarrollo de una estrategia hay muchos detalles complejos a tener en cuenta, muchos de los cuales no se destacan para los traders principiantes. Como resultado, muchos comerciantes, incluido yo mismo, hemos tenido que aprender estas lecciones a las duras penas. Este artículo se basa en mis observaciones de errores comunes que la mayoría de los traders principiantes encuentran al desarrollar estrategias en MQL5. Ofrecerá una variedad de consejos, trucos y ejemplos para ayudar a identificar la descalificación de un EA y probar la solidez de nuestros propios EA de una manera fácil de implementar. El objetivo es educar a los lectores, ayudándolos a evitar futuras estafas al comprar EA, así como a prevenir errores en el desarrollo de su propia estrategia.
Del básico al intermedio: Estructuras (IV)
En este artículo, veremos cómo producir el llamado código estructural, en el que se coloca todo el contexto y las formas de manipular variables e información dentro de una estructura, con el fin de generar un contexto adecuado para la implementación de cualquier código. Veremos la necesidad de utilizar la cláusula private para separar lo que es público de lo que no, espetando así la regla de encapsulamiento y manteniendo el contexto para el que se creó una estructura de datos.
Desarrollo de un sistema de repetición (Parte 64): Presionando play en el servicio (V)
En este artículo, mostraré cómo corregir dos errores presentes en el código. Sin embargo, he intentado explicarlas de manera que tú, aspirante a programador, entiendas que las cosas no siempre ocurrirán como habías previsto. Pero esto no debe ser motivo de desesperación, sino una oportunidad para aprender. El contenido expuesto aquí tiene como único propósito ser didáctico. En ningún caso debe interpretarse como una aplicación cuya finalidad sea distinta al aprendizaje y estudio de los conceptos presentados.
Dominando los registros (Parte 4): Guardar registros en archivos
En este artículo, te enseñaré operaciones básicas con archivos y cómo configurar un controlador flexible para personalizarlo. Actualizaremos la clase CLogifyHandlerFile para escribir los registros directamente en un archivo. Realizaremos una prueba de rendimiento simulando una estrategia en el EURUSD durante una semana, generando registros en cada tick, con una duración total de 5 minutos y 11 segundos. El resultado se comparará en un artículo futuro, en el que implementaremos un sistema de almacenamiento en caché para mejorar el rendimiento.
Simulación de mercado (Parte 07): Sockets (I)
Sockets. ¿Sabes para qué sirven o cómo usarlos en MetaTrader 5? Si la respuesta es no, comencemos aprendiendo un poco sobre ellos. Este artículo trata de lo más básico. Pero, como existen diversas maneras de hacer lo mismo, y lo que realmente nos interesa es siempre el resultado, quiero mostrar que sí, existe una forma sencilla de pasar datos desde MetaTrader 5 hacia otros programas, como, por ejemplo, Excel. Sin embargo, la idea principal no es transferir datos de MetaTrader 5 a Excel, sino hacer lo contrario. Es decir, transferir datos desde Excel, o desde cualquier otro programa, hacia MetaTrader 5.
Simulación de mercado (Parte 14): Sockets (VIII)
Muchos podrían sugerir que deberíamos dejar de usar Excel y pasar a Python directamente, haciendo uso de algunos paquetes que permitirían a Python crear un archivo de Excel para poder analizar los resultados después. Pero, como se mencionó en el artículo anterior, aunque esta solución sea la más sencilla para muchos programadores, no será bien recibida por algunos usuarios. Y, en este asunto, el usuario siempre tiene la razón. Tú, como programador, debes encontrar la forma de hacer que las cosas funcionen.
Redes neuronales en el trading: Mejora de la eficiencia del Transformer mediante la reducción de la nitidez (Final)
El SAMformer ofrece una solución a los problemas clave del Transformer en la previsión de series temporales a largo plazo, incluida la complejidad del entrenamiento y la escasa generalización a muestras pequeñas. Su arquitectura poco profunda y la optimización con control de nitidez garantizan que se eviten los malos mínimos locales. En este artículo, proseguiremos la aplicación de enfoques utilizando MQL5 y evaluaremos su valor práctico.
Creación de un Panel de administración de operaciones en MQL5 (Parte IX): Organización del código (II): Modularización
En este debate, damos un paso más allá al desglosar nuestro programa MQL5 en módulos más pequeños y manejables. Estos componentes modulares se integrarán posteriormente en el programa principal, mejorando su organización y facilidad de mantenimiento. Este enfoque simplifica la estructura de nuestro programa principal y permite reutilizar los componentes individuales en otros asesores expertos (EA) y desarrollos de indicadores. Al adoptar este diseño modular, creamos una base sólida para futuras mejoras, lo que beneficia tanto a nuestro proyecto como a la comunidad de desarrolladores en general.
Visualización de estrategias en MQL5: distribuimos los resultados de la optimización en gráficos de criterios
En este artículo, escribiremos un ejemplo de visualización del proceso de optimización e implementaremos la visualización de las tres mejores pasadas para cuatro criterios de optimización. Asimismo, ofreceremos la posibilidad de seleccionar una de las tres mejores pasadas para mostrar sus datos en tablas y gráficos.