Artículos de programación MQL4 y MQL5

icon

Aprenda el lenguaje de programación de estrategias comerciales MQL5 leyendo numerosos artículos la mayor parte de los cuales han sido escritos por Ustedes - miembros de MQL5.community. Con el fin de buscar rápidamente la respuesta sobre una u otra cuestión de programación, todos los artículos están divididos en categorías: "Integración", "Probador", "Estrategias comerciales", etc.

Siga las nuevas publicaciones y participe en sus discusiones en el foro de MQL5.community!

Nuevo artículo
últimas | mejores
preview
Filtrado y extracción de características en el dominio de la frecuencia

Filtrado y extracción de características en el dominio de la frecuencia

En este artículo, analizaremos la aplicación de filtros digitales a series temporales representadas en el dominio de la frecuencia con el fin de extraer características únicas que puedan resultar útiles para los modelos de predicción.
preview
Desarrollando un EA comercial desde cero (Parte 15): Acceso a los datos en la web (I)

Desarrollando un EA comercial desde cero (Parte 15): Acceso a los datos en la web (I)

Cómo acceder a los datos en la web dentro de MetaTrader 5. En la web tenemos varios sitios y lugares en los que una gran y vasta cantidad de información está disponible y accesible para aquellos que saben dónde buscar y cómo utilizar mejor esta información.
preview
Indicador de estimación de fuerza y debilidad de pares de divisas en MQL5 puro

Indicador de estimación de fuerza y debilidad de pares de divisas en MQL5 puro

Hoy crearemos un indicador profesional para analizar la fuerza de las divisas en MQL5. Esta guía paso a paso le enseñará cómo desarrollar una poderosa herramienta comercial con un tablero visual para MetaTrader 5. Asimismo, aprenderá a calcular la fuerza de los pares de divisas en múltiples marcos temporales (H1, H4, D1), a implementar actualizaciones dinámicas de datos y a crear una interfaz fácil de usar.
preview
Múltiples indicadores en un gráfico (Parte 06): Convirtamos el MetaTrader 5 en un sistema RAD (II)

Múltiples indicadores en un gráfico (Parte 06): Convirtamos el MetaTrader 5 en un sistema RAD (II)

En el artículo anterior mostré cómo crear un Chart Trade utilizando los objetos de MetaTrader 5, por medio de la conversión de la plataforma en un sistema RAD. El sistema funciona muy bien, y creo que muchos han pensado en crear una librería para tener cada vez más funcionalidades en el sistema propuesto, y así lograr desarrollar un EA que sea más intuitivo a la vez que tenga una interfaz más agradable y sencilla de utilizar.
preview
Redes neuronales: así de sencillo (Parte 45): Entrenando habilidades de exploración de estados

Redes neuronales: así de sencillo (Parte 45): Entrenando habilidades de exploración de estados

El entrenamiento de habilidades útiles sin una función de recompensa explícita es uno de los principales desafíos del aprendizaje por refuerzo jerárquico. Ya nos hemos familiarizado antes con dos algoritmos para resolver este problema, pero el tema de la exploración del entorno sigue abierto. En este artículo, veremos un enfoque distinto en el entrenamiento de habilidades, cuyo uso dependerá directamente del estado actual del sistema.
preview
Añadimos un LLM personalizado a un robot comercial (Parte 3): Entrenando tu propio LLM utilizando la CPU

Añadimos un LLM personalizado a un robot comercial (Parte 3): Entrenando tu propio LLM utilizando la CPU

Con el rápido desarrollo de la inteligencia artificial actual, los modelos de lenguaje (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar LLM potentes en nuestro trading algorítmico. Para la mayoría de las personas, es difícil ajustar estos poderosos modelos según sus necesidades, implementarlos localmente y luego aplicarlos al comercio algorítmico. Esta serie de artículos abordará paso a paso cómo lograr este objetivo.
preview
Trabajamos con modelos ONNX en formato float16 y float8

Trabajamos con modelos ONNX en formato float16 y float8

Los formatos de datos usados para representar modelos de aprendizaje automático desempeñan un papel clave en su eficacia. En los últimos años, se han desarrollado varios tipos de datos nuevos específicamente para trabajar con modelos de aprendizaje profundo. En este artículo nos centraremos en dos nuevos formatos de datos que se han generalizado en los modelos modernos.
preview
Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Teoría y métodos

Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Teoría y métodos

En este artículo nos familiarizaremos con el algoritmo de colmena artificial (ABHA), desarrollado en 2009. El algoritmo está orientado a la resolución de problemas de optimización continua. Veremos cómo el ABHA se inspira en el comportamiento de una colonia de abejas, donde cada abeja tiene un papel único que les ayuda a encontrar recursos de forma más eficiente.
preview
Redes neuronales: así de sencillo (Parte 23): Creamos una herramienta para el Transfer Learning

Redes neuronales: así de sencillo (Parte 23): Creamos una herramienta para el Transfer Learning

En esta serie de artículos, hemos mencionado el Aprendizaje por Transferencia más de una vez, pero hasta ahora no había sido más que una mención. Le propongo rellenar este vacío y analizar más de cerca el Aprendizaje por Transferencia.
preview
Redes neuronales: así de sencillo (Parte 67): Utilizamos la experiencia adquirida para afrontar nuevos retos

Redes neuronales: así de sencillo (Parte 67): Utilizamos la experiencia adquirida para afrontar nuevos retos

En este artículo, seguiremos hablando de los métodos de recopilación de datos en una muestra de entrenamiento. Obviamente, en el proceso de entrenamiento será necesaria una interacción constante con el entorno, aunque con frecuencia se dan situaciones diferentes.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 02): Primeros experimentos (II)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 02): Primeros experimentos (II)

Intentemos esta vez un enfoque diferente para lograr el objetivo de 1 minuto. Sin embargo, esta tarea no es tan sencilla como muchos piensan.
preview
Desarrollo de un sistema de repetición (Parte 28): Proyecto Expert Advisor — Clase C_Mouse (I)

Desarrollo de un sistema de repetición (Parte 28): Proyecto Expert Advisor — Clase C_Mouse (I)

Cuando los primeros sistemas capaces de factorizar algo comenzaron a ser producidos, todo requería la intervención de ingenieros con un amplio conocimiento sobre lo que se estaba diseñando. Estamos hablando de los albores de la computación, una época en la que ni siquiera existían terminales que permitieran la programación de algo. A medida que el desarrollo avanzaba y crecía el interés para que más personas pudieran crear algo, surgían nuevas ideas y métodos para programar esas máquinas, que antes dependían de la modificación de la posición de los conectores. Fue entonces cuando aparecieron los primeros terminales.
Trabajando con los precios en la biblioteca DoEasy (Parte 60): Lista de serie de datos de tick del símbolo
Trabajando con los precios en la biblioteca DoEasy (Parte 60): Lista de serie de datos de tick del símbolo

Trabajando con los precios en la biblioteca DoEasy (Parte 60): Lista de serie de datos de tick del símbolo

En este artículo, vamos a crear una lista para almacenar los datos de tick del símbolo único, después, verificaremos su creación y obtención de los datos requeridos en el Asesor Experto. Dichas listas —siendo aplicada cada una de ellas para cada símbolo usado— van a componer luego la colección de datos de tick.
preview
Asesor Experto Grid-Hedge Modificado en MQL5 (Parte III): Optimización de una estrategia de cobertura simple (I)

Asesor Experto Grid-Hedge Modificado en MQL5 (Parte III): Optimización de una estrategia de cobertura simple (I)

En la tercera parte, volveremos a los Asesores Expertos Simple Hedge y Simple Grid que hemos desarrollado anteriormente. En esta ocasión, mejoraremos el Simple Hedge Expert Advisor usando el análisis matemático y el enfoque de fuerza bruta para utilizar de manera óptima la estrategia. Este artículo profundizará en la optimización matemática de estrategias, sentando las bases para futuras investigaciones sobre la optimización basada en códigos de partes posteriores.
preview
Cómo implementar la optimización automática en los asesores expertos de MQL5

Cómo implementar la optimización automática en los asesores expertos de MQL5

Guía paso a paso para la optimización automática en MQL5 para Asesores Expertos. Cubriremos la lógica de optimización robusta, las mejores prácticas para la selección de parámetros y cómo reconstruir estrategias con pruebas retrospectivas. Además, se discutirán métodos de nivel superior, como la optimización del avance, para mejorar su enfoque comercial.
preview
Gráficos en la biblioteca DoEasy (Parte 100): Solucionamos las deficiencias al trabajar con los objetos gráficos estándar extendidos

Gráficos en la biblioteca DoEasy (Parte 100): Solucionamos las deficiencias al trabajar con los objetos gráficos estándar extendidos

Hoy vamos a hacer un poco de "limpieza": para ello, eliminaremos los defectos que surgen al trabajar con los objetos gráficos extendidos (y estándar) y los objetos de formulario simultáneamente en el lienzo, y también arreglaremos los errores detectados durante las pruebas en el artículo anterior. Y así concluirá esta sección de la descripción de la biblioteca.
preview
Aprendizaje automático y Data Science (Parte 12): ¿Es posible tener éxito en el mercado usando redes neuronales de autoaprendizaje?

Aprendizaje automático y Data Science (Parte 12): ¿Es posible tener éxito en el mercado usando redes neuronales de autoaprendizaje?

Probablemente mucha gente esté cansada de intentar predecir el mercado bursátil constantemente. ¿No le gustaría tener una bola de cristal que le ayudara a tomar decisiones de inversión más informadas? Las redes neuronales de autoaprendizaje podrían ser su solución. En este artículo, analizaremos si estos potentes algoritmos pueden ayudarnos a "subirnos a la ola" y ser más astutos que el mercado bursátil. Mediante el análisis de grandes cantidades de datos y la identificación de patrones, las redes neuronales de autoaprendizaje pueden hacer predicciones que a menudo resultan más precisas que las realizadas por los tráders. Veamos si estas tecnologías de vanguardia pueden usarse para tomar decisiones de inversión inteligentes y ganar más.
preview
Algoritmo de recompra: simulación del comercio multidivisa

Algoritmo de recompra: simulación del comercio multidivisa

En este artículo crearemos un modelo matemático para simular la formación de precios multidivisa y completaremos el estudio del principio de diversificación en la búsqueda de mecanismos para aumentar la eficiencia del trading que inicié en el artículo anterior con cálculos teóricos.
preview
Aprendizaje automático y Data Science (Parte 29): Consejos esenciales para seleccionar los mejores datos de divisas para el entrenamiento de IA

Aprendizaje automático y Data Science (Parte 29): Consejos esenciales para seleccionar los mejores datos de divisas para el entrenamiento de IA

En este artículo, profundizamos en los aspectos cruciales de la elección de los datos de Forex más relevantes y de alta calidad para mejorar el rendimiento de los modelos de IA.
preview
Creación de un EA limitador de reducción diaria en MQL5

Creación de un EA limitador de reducción diaria en MQL5

El artículo analiza, desde una perspectiva detallada, cómo implementar la creación de un Asesor Experto (EA) basado en el algoritmo comercial. Esto ayuda a automatizar el sistema en MQL5 y tomar el control de la reducción diaria.
preview
Implementación de Breakeven en MQL5 (Parte 2): Breakeven basado en ATR y RRR

Implementación de Breakeven en MQL5 (Parte 2): Breakeven basado en ATR y RRR

En este artículo se finaliza la implementación del breakeven por atr y rr en MQL5, junto con el desarrollo desde cero de una clase que permite cambiar fácilmente el tipo de breakeven sin necesidad de reingresar los parámetros. Se realizan múltiples backtests para evaluar el rendimiento de cada tipo, analizando sus ventajas y desventajas en el contexto del trading algorítmico.
Gráficos en la biblioteca DoEasy (Parte 82): Refactorización de los objetos de la biblioteca y colección de objetos gráficos
Gráficos en la biblioteca DoEasy (Parte 82): Refactorización de los objetos de la biblioteca y colección de objetos gráficos

Gráficos en la biblioteca DoEasy (Parte 82): Refactorización de los objetos de la biblioteca y colección de objetos gráficos

En el presente artículo, mejoraremos todos los objetos de la biblioteca: para ello, asignaremos a cada objeto su tipo único y continuaremos desarrollando la clase de colección de objetos gráficos de la biblioteca.
preview
DoEasy. Elementos de control (Parte 9): Reorganizando los métodos de los objetos WinForms, los controles "RadioButton" y "Button"

DoEasy. Elementos de control (Parte 9): Reorganizando los métodos de los objetos WinForms, los controles "RadioButton" y "Button"

En este artículo, ordenaremos los nombres de las clases de objeto WinForms y crearemos los objetos WinForms Button y RadioButton.
Trabajando con los precios en la biblioteca DoEasy (Parte 59): Objeto para almacenar los datos de un tick
Trabajando con los precios en la biblioteca DoEasy (Parte 59): Objeto para almacenar los datos de un tick

Trabajando con los precios en la biblioteca DoEasy (Parte 59): Objeto para almacenar los datos de un tick

A partir de este artículo, procedemos a la creación de la funcionalidad de la biblioteca para trabajar con los datos de precios. Hoy, crearemos una clase del objeto que va a almacenar todos los datos de los precios que llegan con un tick.
preview
Implementando el factor Janus en MQL5

Implementando el factor Janus en MQL5

Gary Anderson desarrolló un método de análisis de mercado basado en una teoría que denominó el factor Janus. La teoría describe un conjunto de indicadores que se pueden usar para identificar tendencias y evaluar el riesgo de mercado. En este artículo, implementaremos dichas herramientas en MQL5.
preview
Algoritmos de optimización de la población: Algoritmo electromagnético (ElectroMagnetism-like algorithm, ЕМ)

Algoritmos de optimización de la población: Algoritmo electromagnético (ElectroMagnetism-like algorithm, ЕМ)

El artículo describe los principios, métodos y posibilidades del uso del algoritmo electromagnético (EM) en diversos problemas de optimización. El algoritmo EM es una herramienta de optimización eficiente capaz de trabajar con grandes cantidades de datos y funciones multidimensionales.
preview
DoEasy. Elementos de control (Parte 4): Elemento de control "Panel", parámetros Padding y Dock

DoEasy. Elementos de control (Parte 4): Elemento de control "Panel", parámetros Padding y Dock

En este artículo, implementaremos el funcionamiento de los parámetros de panel Padding (rellenado/márgenes internos en todos los lados del elemento) y Dock (la forma en que el objeto se ubica dentro del contenedor).
preview
Redes neuronales: así de sencillo (Parte 24): Mejorando la herramienta para el Transfer Learning

Redes neuronales: así de sencillo (Parte 24): Mejorando la herramienta para el Transfer Learning

En el último artículo, creamos una herramienta capaz de crear y editar arquitecturas de redes neuronales. Hoy querríamos proponerles continuar con el desarrollo de esta herramienta, para lograr que resulte más fácil de usar. En cierto modo, esto se aleja un poco de nuestro tema, pero estará de acuerdo con que la organización del espacio de trabajo desempeña un papel importante en el resultado final.
preview
Desarrollando un cliente MQTT para MetaTrader 5: metodología de TDD

Desarrollando un cliente MQTT para MetaTrader 5: metodología de TDD

El presente artículo representa el primer intento de desarrollar un cliente MQTT nativo para MQL5. El MQTT es un protocolo de comunicación "publicación-suscripción". Es ligero, abierto, simple y está diseñado para implementarse con facilidad, lo cual permite su uso en muchas situaciones.
preview
Algoritmos de optimización de la población: Algoritmo de búsqueda de sistema cargado (Charged System Search, CSS)

Algoritmos de optimización de la población: Algoritmo de búsqueda de sistema cargado (Charged System Search, CSS)

En este artículo, analizaremos otro algoritmo de optimización inspirado en la naturaleza inanimada: el algoritmo de búsqueda de sistema cargado (CSS). El objetivo de este artículo es presentar un nuevo algoritmo de optimización basado en los principios de la física y la mecánica.
preview
Marcado de datos en el análisis de series temporales (Parte 3): Ejemplo de uso del marcado de datos

Marcado de datos en el análisis de series temporales (Parte 3): Ejemplo de uso del marcado de datos

En esta serie de artículos, presentaremos varias técnicas de marcado de series temporales que pueden producir datos que se ajusten a la mayoría de los modelos de inteligencia artificial (IA). El marcado dirigido de datos puede hacer que un modelo de IA entrenado resulte más relevante para las metas y objetivos del usuario, mejorando la precisión del modelo y ayudando a este a dar un salto de calidad.
preview
Cómo desarrollar un agente de aprendizaje por refuerzo en MQL5 con integración RestAPI  (Parte 4): Organización de funciones en clases en MQL5

Cómo desarrollar un agente de aprendizaje por refuerzo en MQL5 con integración RestAPI (Parte 4): Organización de funciones en clases en MQL5

Este artículo examina la transición de la codificación procedimental a la programación orientada a objetos (POO) en MQL5, enfocándose en la integración con REST APIs. Discutimos la organización de funciones de solicitudes HTTP (GET y POST) en clases y destacamos ventajas como el encapsulamiento, la modularidad y la facilidad de mantenimiento. La refactorización de código se detalla, y se muestra la sustitución de funciones aisladas por métodos de clases. El artículo incluye ejemplos prácticos y pruebas.
preview
Trading con spreads en el mercado Fórex utilizando el factor de estacionalidad

Trading con spreads en el mercado Fórex utilizando el factor de estacionalidad

El en presente artículo analizaremos las posibilidades de formar y proporcionar datos sobre el uso del factor de estacionalidad al negociar con spreads en el mercado Fórex.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 15): Nacimiento del SIMULADOR (V) - RANDOM WALK

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 15): Nacimiento del SIMULADOR (V) - RANDOM WALK

En este artículo, vamos a finalizar la fase en la que estamos desarrollando el simulador para nuestro sistema. El propósito principal aquí será ajustar el algoritmo visto en el artículo anterior. Este algoritmo tiene como objetivo crear el movimiento de RANDOM WALK. Por lo tanto, es fundamental comprender el contenido de los artículos anteriores para seguir lo que se explicará aquí. Si no has seguido el desarrollo del simulador, te aconsejo que veas esta secuencia desde el principio. De lo contrario, podrías perderte en lo que se explicará aquí.
preview
Ciclos y Forex

Ciclos y Forex

Los ciclos son de gran importancia en nuestras vidas. El día y la noche, las estaciones, los días de la semana y muchos otros ciclos de distinta naturaleza están presentes en la vida de cualquier persona. En este artículo, consideraremos los ciclos en los mercados financieros.
preview
Desarrollamos un asesor experto multidivisas (Parte 21): Preparación para un experimento importante y optimización del código

Desarrollamos un asesor experto multidivisas (Parte 21): Preparación para un experimento importante y optimización del código

Para continuar avanzando, sería bueno ver si podemos mejorar los resultados realizando periódicamente optimizaciones automáticas repetidas y generando un nuevo asesor experto. El escollo en muchos argumentos sobre el uso de la optimización de parámetros es la cuestión de cuánto tiempo pueden usarse los parámetros obtenidos para operar en el periodo futuro manteniendo los principales indicadores de rentabilidad y reducción en los niveles dados. ¿Es posible en general lograrlo?
preview
Variables y tipos de datos extendidos en MQL5

Variables y tipos de datos extendidos en MQL5

Las variables y los tipos de datos son temas muy importantes no solo en la programación MQL5, sino también en cualquier lenguaje de programación. Las variables y los tipos de datos de MQL5 pueden dividirse en simples y extendidos. Aquí veremos las variables y los tipos de datos extendidos. Ya analizamos los sencillos en un artículo anterior.
preview
Visualización de transacciones en un gráfico (Parte 1): Seleccionar un periodo para el análisis

Visualización de transacciones en un gráfico (Parte 1): Seleccionar un periodo para el análisis

Aquí vamos a desarrollar un script desde cero que simplifica la descarga de pantallas de impresión de transacciones para analizar entradas comerciales. Toda la información necesaria sobre una única operación se puede mostrar cómodamente en un gráfico con la posibilidad de dibujar diferentes marcos temporales.
preview
Permutación de las barras de precio en MQL5

Permutación de las barras de precio en MQL5

En este artículo, presentaremos un algoritmo de permutación de barras de precio y detallaremos cómo se pueden utilizar las pruebas de permutación para identificar los casos en los que se ha fabricado el rendimiento de la estrategia para engañar a los posibles compradores del asesor.
preview
Robot comercial multimodular en Python y MQL5 (Parte I): Creamos la arquitectura básica y los primeros módulos

Robot comercial multimodular en Python y MQL5 (Parte I): Creamos la arquitectura básica y los primeros módulos

Hoy desarrollaremos un sistema comercial modular que combina Python para el análisis de datos con MQL5 para la ejecución de transacciones. Sus cuatro módulos independientes supervisan en paralelo distintos aspectos del mercado: volúmenes, arbitraje, economía y riesgo, y utilizan RandomForest con 400 árboles para el análisis. Se hace especial hincapié en la gestión del riesgo, porque sin una gestión eficaz del riesgo, ni siquiera los algoritmos comerciales más avanzados sirven de mucho.