Artículos de programación MQL4 y MQL5

icon

Aprenda el lenguaje de programación de estrategias comerciales MQL5 leyendo numerosos artículos la mayor parte de los cuales han sido escritos por Ustedes - miembros de MQL5.community. Con el fin de buscar rápidamente la respuesta sobre una u otra cuestión de programación, todos los artículos están divididos en categorías: "Integración", "Probador", "Estrategias comerciales", etc.

Siga las nuevas publicaciones y participe en sus discusiones en el foro de MQL5.community!

Nuevo artículo
últimas | mejores
preview
Implementación de un algoritmo de trading de negociación rápida utilizando SAR Parabólico (Stop and Reverse, SAR) y Media Móvil Simple (Simple Moving Average, SMA) en MQL5

Implementación de un algoritmo de trading de negociación rápida utilizando SAR Parabólico (Stop and Reverse, SAR) y Media Móvil Simple (Simple Moving Average, SMA) en MQL5

En este artículo, desarrollamos un Asesor Experto de trading de ejecución rápida en MQL5, aprovechando los indicadores SAR Parabólico (Stop and Reverse, SAR) y Media Móvil Simple (Simple Moving Average, SMA) para crear una estrategia de trading reactiva y eficiente. Detallamos la implementación de la estrategia, incluyendo el uso de los indicadores, la generación de señales y el proceso de prueba y optimización.
Trabajando con los precios en la biblioteca DoEasy (Parte 64): Profundidad del mercado, clases del objeto de instantánea y del objeto de serie de instantáneas del DOM
Trabajando con los precios en la biblioteca DoEasy (Parte 64): Profundidad del mercado, clases del objeto de instantánea y del objeto de serie de instantáneas del DOM

Trabajando con los precios en la biblioteca DoEasy (Parte 64): Profundidad del mercado, clases del objeto de instantánea y del objeto de serie de instantáneas del DOM

En este artículo, vamos a crear dos clases: la clase del objeto de instantánea del DOM y la clase del objeto de serie de instantáneas del DOM, además, simularemos la creación de la serie de datos del DOM.
preview
Desarrollo de un sistema de repetición (Parte 28): Proyecto Expert Advisor — Clase C_Mouse (I)

Desarrollo de un sistema de repetición (Parte 28): Proyecto Expert Advisor — Clase C_Mouse (I)

Cuando los primeros sistemas capaces de factorizar algo comenzaron a ser producidos, todo requería la intervención de ingenieros con un amplio conocimiento sobre lo que se estaba diseñando. Estamos hablando de los albores de la computación, una época en la que ni siquiera existían terminales que permitieran la programación de algo. A medida que el desarrollo avanzaba y crecía el interés para que más personas pudieran crear algo, surgían nuevas ideas y métodos para programar esas máquinas, que antes dependían de la modificación de la posición de los conectores. Fue entonces cuando aparecieron los primeros terminales.
preview
Aprendizaje automático y ciencia de datos (Parte 15): SVM, una herramienta útil en el arsenal de los tráders

Aprendizaje automático y ciencia de datos (Parte 15): SVM, una herramienta útil en el arsenal de los tráders

En este artículo analizaremos el papel que desempeña el método de máquinas de vectores soporte (Support Vector Machines, SVM) en la configuración del futuro del comercio. El artículo puede considerarse una guía detallada sobre cómo utilizar SVM para mejorar las estrategias comerciales, optimizar la toma de decisiones y abrir nuevas oportunidades en los mercados financieros. Hoy nos sumergiremos en el mundo de la SVM a través de aplicaciones reales, instrucciones paso a paso y revisiones por pares. Quizá esta herramienta indispensable le ayude a entender las complejidades del comercio moderno. En cualquier caso, la SVM se convertirá en una herramienta muy útil en el arsenal de todo tráder.
preview
Escribimos el primer modelo de caja de cristal (Glass Box) en Python y MQL5

Escribimos el primer modelo de caja de cristal (Glass Box) en Python y MQL5

Los modelos de aprendizaje automático son difíciles de interpretar, y entender por qué los modelos no se ajustan a nuestras expectativas puede ayudarnos mucho a conseguir, en última instancia, el resultado deseado al utilizar técnicas tan avanzadas. Sin un conocimiento exhaustivo del funcionamiento interno del modelo, podría resultar difícil encontrar fallos que degraden el rendimiento. De este modo, podremos dedicar tiempo a crear funciones que no afecten a la calidad de la previsión. La conclusión es que, por muy bueno que sea un modelo, nos perderemos todas sus grandes ventajas por culpa de nuestros propios errores. Afortunadamente, existe una solución sofisticada y bien diseñada que permite ver con claridad lo que sucede bajo el capó del modelo.
preview
Elaboración de previsiones económicas: el potencial de Python

Elaboración de previsiones económicas: el potencial de Python

¿Cómo utilizar los datos económicos del Banco Mundial para crear previsiones? ¿Qué ocurre si se combinan modelos de IA y economía?
preview
Asesor Experto Grid-Hedge Modificado en MQL5 (Parte III): Optimización de una estrategia de cobertura simple (I)

Asesor Experto Grid-Hedge Modificado en MQL5 (Parte III): Optimización de una estrategia de cobertura simple (I)

En la tercera parte, volveremos a los Asesores Expertos Simple Hedge y Simple Grid que hemos desarrollado anteriormente. En esta ocasión, mejoraremos el Simple Hedge Expert Advisor usando el análisis matemático y el enfoque de fuerza bruta para utilizar de manera óptima la estrategia. Este artículo profundizará en la optimización matemática de estrategias, sentando las bases para futuras investigaciones sobre la optimización basada en códigos de partes posteriores.
preview
Redes neuronales: así de sencillo (Parte 23): Creamos una herramienta para el Transfer Learning

Redes neuronales: así de sencillo (Parte 23): Creamos una herramienta para el Transfer Learning

En esta serie de artículos, hemos mencionado el Aprendizaje por Transferencia más de una vez, pero hasta ahora no había sido más que una mención. Le propongo rellenar este vacío y analizar más de cerca el Aprendizaje por Transferencia.
preview
Algoritmos de optimización de la población: Algoritmo electromagnético (ElectroMagnetism-like algorithm, ЕМ)

Algoritmos de optimización de la población: Algoritmo electromagnético (ElectroMagnetism-like algorithm, ЕМ)

El artículo describe los principios, métodos y posibilidades del uso del algoritmo electromagnético (EM) en diversos problemas de optimización. El algoritmo EM es una herramienta de optimización eficiente capaz de trabajar con grandes cantidades de datos y funciones multidimensionales.
preview
Experimentos con redes neuronales (Parte 4): Patrones

Experimentos con redes neuronales (Parte 4): Patrones

Las redes neuronales lo son todo. Vamos a comprobar en la práctica si esto es así. MetaTrader 5 como herramienta autosuficiente para el uso de redes neuronales en el trading. Una explicación sencilla.
preview
Ciclos y Forex

Ciclos y Forex

Los ciclos son de gran importancia en nuestras vidas. El día y la noche, las estaciones, los días de la semana y muchos otros ciclos de distinta naturaleza están presentes en la vida de cualquier persona. En este artículo, consideraremos los ciclos en los mercados financieros.
preview
Trabajando con las series temporales en la biblioteca DoEasy (Parte 56): Objeto del indicador personalizado, obtención de datos de parte de los objetos de indicador en la colección

Trabajando con las series temporales en la biblioteca DoEasy (Parte 56): Objeto del indicador personalizado, obtención de datos de parte de los objetos de indicador en la colección

En el presente artículo, vamos a considerar la creación de un objeto del indicador personalizado para usarlo en los asesores expertos. Mejoraremos un poco las clases de la biblioteca y escribiremos los métodos para obtener los datos de parte de los objetos de indicador en los expertos.
preview
Integración de Smart Money Concepts (SMC), Order Blocks (OB) y Fibonacci para entradas óptimas

Integración de Smart Money Concepts (SMC), Order Blocks (OB) y Fibonacci para entradas óptimas

Los bloques de órdenes (Order Blocks, OB) son áreas clave donde los operadores institucionales inician compras o ventas significativas. Después de un movimiento de precio significativo, Fibonacci ayuda a identificar un retroceso potencial desde un máximo reciente hasta un mínimo para identificar la entrada comercial óptima.
preview
Características del Wizard MQL5 que debe conocer (Parte 08): Perceptrones

Características del Wizard MQL5 que debe conocer (Parte 08): Perceptrones

Los perceptrones, o redes con una sola capa oculta, pueden ser una buena opción para quienes estén familiarizados con los fundamentos del comercio automatizado y quieran sumergirse en las redes neuronales. Paso a paso veremos como se pueden implementar en el ensamblado de clases de señales que forma parte de las clases del Wizard MQL5 para asesores expertos.
preview
Redes neuronales: así de sencillo (Parte 36): Modelos relacionales de aprendizaje por refuerzo (Relational Reinforcement Learning)

Redes neuronales: así de sencillo (Parte 36): Modelos relacionales de aprendizaje por refuerzo (Relational Reinforcement Learning)

En los modelos de aprendizaje por refuerzo analizados anteriormente, usamos varias opciones de redes convolucionales que pueden identificar varios objetos en los datos originales. La principal ventaja de las redes convolucionales es su capacidad de identificar objetos independientemente de la ubicación de estos. Al mismo tiempo, las redes convolucionales no siempre son capaces de hacer frente a diversas deformaciones de los objetos y al ruido. Pero estos problemas pueden resolverse usando el modelo relacional.
preview
Redes neuronales: así de sencillo (Parte 62): Uso del transformador de decisiones en modelos jerárquicos

Redes neuronales: así de sencillo (Parte 62): Uso del transformador de decisiones en modelos jerárquicos

En artículos recientes, hemos visto varios usos del método Decision Transformer, que permite analizar no solo el estado actual, sino también la trayectoria de los estados anteriores y las acciones realizadas en ellos. En este artículo, veremos una variante del uso de este método en modelos jerárquicos.
preview
Algoritmos de optimización de la población: Algoritmo de recocido isotrópico simulado (Simulated Isotropic Annealing, SIA). Parte II

Algoritmos de optimización de la población: Algoritmo de recocido isotrópico simulado (Simulated Isotropic Annealing, SIA). Parte II

En la primera parte del artículo, hablamos del conocido y popular algoritmo del recocido simulado, analizamos sus ventajas y describimos detalladamente sus desventajas. La segunda parte del artículo se dedicará a la transformación cardinal del algoritmo y su renacimiento en un nuevo algoritmo de optimización, el "recocido isotrópico simulado, SIA".
preview
DoEasy. Elementos de control (Parte 13): Optimizando la interacción de los objetos WinForms con el ratón. Comenzamos el desarrollo del objeto WinForms TabControl

DoEasy. Elementos de control (Parte 13): Optimizando la interacción de los objetos WinForms con el ratón. Comenzamos el desarrollo del objeto WinForms TabControl

En el presente artículo, corregiremos y optimizaremos el procesamiento de la apariencia de los objetos WinForms después de mover el cursor del ratón lejos del objeto y comenzaremos a desarrollar el objeto TabControl WinForms.
preview
Redes neuronales: así de sencillo (Parte 87): Segmentación de series temporales

Redes neuronales: así de sencillo (Parte 87): Segmentación de series temporales

La previsión juega un papel esencial en el análisis de series temporales. En este nuevo artículo, hablaremos de las ventajas de la segmentación de series temporales.
preview
Aprendizaje automático y Data Science (Parte 29): Consejos esenciales para seleccionar los mejores datos de divisas para el entrenamiento de IA

Aprendizaje automático y Data Science (Parte 29): Consejos esenciales para seleccionar los mejores datos de divisas para el entrenamiento de IA

En este artículo, profundizamos en los aspectos cruciales de la elección de los datos de Forex más relevantes y de alta calidad para mejorar el rendimiento de los modelos de IA.
Otras clases en la biblioteca DoEasy (Parte 70): Ampliación de la funcionalidad y actualización automática de la colección de objetos de gráfico
Otras clases en la biblioteca DoEasy (Parte 70): Ampliación de la funcionalidad y actualización automática de la colección de objetos de gráfico

Otras clases en la biblioteca DoEasy (Parte 70): Ampliación de la funcionalidad y actualización automática de la colección de objetos de gráfico

En este artículo, ampliaremos la funcionalidad de los objetos de gráfico, organizaremos la navegación por los gráficos, crearemos capturas de pantalla, y también guardaremos plantillas y las aplicaremos a los gráficos. Asimismo, implementaremos la actualización automática de la colección de objetos de gráfico, sus ventanas y los indicadores en ellas.
preview
Perceptrón multicapa y algoritmo de retropropagación (Parte 3): Integración con el simulador de estrategias - Visión general (I)

Perceptrón multicapa y algoritmo de retropropagación (Parte 3): Integración con el simulador de estrategias - Visión general (I)

El perceptrón multicapa es una evolución del perceptrón simple, capaz de resolver problemas separables no linealmente. Junto con el algoritmo de retropropagación, es posible entrenar eficientemente esta red neuronal. En la tercera parte de la serie sobre el perceptrón multicapa y la retropropagación, mostraremos cómo integrar esta técnica con el simulador de estrategias. Esta integración permitirá utilizar análisis de datos complejos y tomar mejores decisiones para optimizar las estrategias de negociación. En este resumen, analizaremos las ventajas y los retos de la aplicación de esta técnica.
preview
DoEasy. Elementos de control (Parte 10): Objetos WinForms: dando vida a la interfaz

DoEasy. Elementos de control (Parte 10): Objetos WinForms: dando vida a la interfaz

Ha llegado el momento de revitalizar la interfaz gráfica de usuario, haciendo que los objetos interactúen con el usuario y otros objetos. Y para que los objetos más complejos funcionen correctamente, necesitaremos una funcionalidad que permita a los objetos interactuar entre sí y con el usuario.
preview
Añadimos un LLM personalizado a un robot comercial (Parte 3): Entrenando tu propio LLM utilizando la CPU

Añadimos un LLM personalizado a un robot comercial (Parte 3): Entrenando tu propio LLM utilizando la CPU

Con el rápido desarrollo de la inteligencia artificial actual, los modelos de lenguaje (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar LLM potentes en nuestro trading algorítmico. Para la mayoría de las personas, es difícil ajustar estos poderosos modelos según sus necesidades, implementarlos localmente y luego aplicarlos al comercio algorítmico. Esta serie de artículos abordará paso a paso cómo lograr este objetivo.
preview
Multibot en MetaTrader (Parte II): Plantilla dinámica mejorada

Multibot en MetaTrader (Parte II): Plantilla dinámica mejorada

Desarrollando el tema del artículo anterior sobre el multibot, hemos decidido crear una plantilla más flexible y funcional, que tenga grandes posibilidades, y que se pueda utilizar eficazmente en freelance, además de como base para desarrollar asesores de divisa y periodo múltiple con posibilidad de integración con soluciones externas.
Trabajando con los precios en la biblioteca DoEasy (Parte 62): Actualización de las series de tick en tiempo real, preparando para trabajar con la Profundidad del mercado
Trabajando con los precios en la biblioteca DoEasy (Parte 62): Actualización de las series de tick en tiempo real, preparando para trabajar con la Profundidad del mercado

Trabajando con los precios en la biblioteca DoEasy (Parte 62): Actualización de las series de tick en tiempo real, preparando para trabajar con la Profundidad del mercado

En este artículo, vamos a desarrollar la actualización de la colección de datos de tick en tiempo real, y prepararemos una clase del objeto de símbolo para manejar la Profundidad del mercado, con la que empezaremos a trabajar a partir del siguiente artículo.
preview
Validación cruzada y fundamentos de la inferencia causal en modelos CatBoost, exportación a formato ONNX

Validación cruzada y fundamentos de la inferencia causal en modelos CatBoost, exportación a formato ONNX

En este artículo veremos un método de autor para crear bots utilizando el aprendizaje automático.
preview
Redes neuronales: así de sencillo (Parte 43): Dominando las habilidades sin función de recompensa

Redes neuronales: así de sencillo (Parte 43): Dominando las habilidades sin función de recompensa

El problema del aprendizaje por refuerzo reside en la necesidad de definir una función de recompensa, que puede ser compleja o difícil de formalizar. Para resolver esto, se están estudiando enfoques basados en la variedad de acciones y la exploración del entorno que permiten aprender habilidades sin una función de recompensa explícita.
preview
Estructuras en MQL5 y métodos para imprimir sus datos

Estructuras en MQL5 y métodos para imprimir sus datos

En este artículo veremos las estructuras MqlDateTime, MqlTick, MqlRates, MqlBookInfo y los métodos para imprimir datos desde estas estructuras. Para imprimir todos los campos de una estructura, existe la función estándar ArrayPrint(), que muestra en un cómodo formato tabular los datos contenidos en un array con el tipo de estructura que se está procesando.
preview
Filtrado y extracción de características en el dominio de la frecuencia

Filtrado y extracción de características en el dominio de la frecuencia

En este artículo, analizaremos la aplicación de filtros digitales a series temporales representadas en el dominio de la frecuencia con el fin de extraer características únicas que puedan resultar útiles para los modelos de predicción.
preview
Redes neuronales en el trading: Modelos del espacio de estados

Redes neuronales en el trading: Modelos del espacio de estados

Una gran cantidad de los modelos que hemos revisado hasta ahora se basan en la arquitectura del Transformer. No obstante, pueden resultar ineficientes al trabajar con secuencias largas. En este artículo le propongo familiarizarse con una rama alternativa de pronóstico de series temporales basada en modelos del espacio de estados.
preview
DoEasy. Elementos de control (Parte 26): Mejoramos el objeto WinForms "ToolTip" y comenzamos a desarrollar "ProgressBar"

DoEasy. Elementos de control (Parte 26): Mejoramos el objeto WinForms "ToolTip" y comenzamos a desarrollar "ProgressBar"

En este artículo, completaremos el desarrollo del control ToolTip y comenzaremos a desarrollar el objeto WinForms ProgressBar. A medida que trabajemos en los objetos, desarrollaremos una funcionalidad universal para animar los controles y sus componentes.
preview
Teoría de categorías en MQL5 (Parte 7): Dominios múltiples, relativos e indexados

Teoría de categorías en MQL5 (Parte 7): Dominios múltiples, relativos e indexados

La teoría de categorías es un apartado diverso y en expansión de las matemáticas, que solo recientemente ha comenzado a ser trabajado por la comunidad MQL5. Esta serie de artículos tiene por objetivo repasar algunos de sus conceptos para crear una biblioteca abierta y seguir usando este maravilloso apartado en la creación de estrategias comerciales.
preview
Marcado de datos en el análisis de series temporales (Parte 5): Aplicación y comprobación de asesores usando Socket

Marcado de datos en el análisis de series temporales (Parte 5): Aplicación y comprobación de asesores usando Socket

En esta serie de artículos, presentaremos varias técnicas de marcado de series temporales que pueden producir datos que se ajusten a la mayoría de los modelos de inteligencia artificial (IA). El marcado dirigido de datos puede hacer que un modelo de IA entrenado resulte más relevante para las metas y objetivos del usuario, mejorando la precisión del modelo y ayudando a este a dar un salto de calidad.
preview
Desarrollo de un sistema de repetición (Parte 59): Un nuevo futuro

Desarrollo de un sistema de repetición (Parte 59): Un nuevo futuro

La correcta comprensión de las cosas nos permite hacer más con menos esfuerzo. En este artículo, explicaré por qué es necesario ajustar la aplicación de la plantilla antes de que el servicio comience a interactuar realmente con el gráfico. Además, ¿qué tal si mejoramos el indicador del mouse para que podamos hacer más cosas con él?
preview
Integración de modelos ML con el simulador de estrategias (Parte 3): Gestión de archivos CSV(II)

Integración de modelos ML con el simulador de estrategias (Parte 3): Gestión de archivos CSV(II)

Este texto es una guía completa sobre la creación de una clase en MQL5 para la gestión eficaz de archivos CSV. En él comprenderás cómo se lleva a cabo la implementación de métodos de apertura, escritura, lectura y conversión de datos y cómo se pueden emplear para guardar y acceder a la información. Además, trataremos las restricciones y los aspectos cruciales a la hora de utilizar una clase de este tipo. Este es un material valioso para aquellos que deseen aprender a manipular archivos CSV en MQL5.
preview
Implementando el factor Janus en MQL5

Implementando el factor Janus en MQL5

Gary Anderson desarrolló un método de análisis de mercado basado en una teoría que denominó el factor Janus. La teoría describe un conjunto de indicadores que se pueden usar para identificar tendencias y evaluar el riesgo de mercado. En este artículo, implementaremos dichas herramientas en MQL5.
preview
Cómo crear un diario de operaciones con MetaTrader y Google Sheets

Cómo crear un diario de operaciones con MetaTrader y Google Sheets

Crear un diario de operaciones con MetaTrader y Google Sheets! Aprenderá cómo sincronizar sus datos comerciales a través de HTTP POST y recuperarlos mediante solicitudes HTTP. Al final, tendrás un diario de operaciones que te ayudará a realizar un seguimiento de tus operaciones de manera eficaz y eficiente.
preview
Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte III): Descifrando el algoritmo del Boom 1000

Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte III): Descifrando el algoritmo del Boom 1000

En esta serie de artículos, analizamos cómo podemos construir Asesores Expertos capaces de adaptarse de forma autónoma a las condiciones dinámicas del mercado. En el artículo de hoy, intentaremos sintonizar una red neuronal profunda con los mercados sintéticos de Deriv.
preview
Interpretación de modelos: Una comprensión más profunda de los modelos de aprendizaje automático

Interpretación de modelos: Una comprensión más profunda de los modelos de aprendizaje automático

El aprendizaje automático es un campo desafiante y gratificante para cualquiera, independientemente de la experiencia que tenga. En este artículo, nos sumergiremos en el funcionamiento interno de los modelos creados, exploraremos el complejo mundo de las funciones, las predicciones y las soluciones eficientes, y comprenderemos claramente la interpretación de los modelos. Asimismo, aprenderemos el arte de hacer concesiones, mejorar las predicciones, clasificar la importancia de los parámetros y tomar decisiones sólidas. Este artículo le ayudará a mejorar el rendimiento de los modelos de aprendizaje automático y a sacar más partido de sus metodologías.