
Trabajando con las series temporales en la biblioteca DoEasy (Parte 57): Objeto de datos del búfer de indicador
En este artículo, vamos a desarrollar el objeto que incluirá todos los datos de un búfer de un indicador. Estos objetos serán necesarios para almacenar los datos de serie de los búferes de indicadores, a través de los cuales será posible ordenar y comparar los datos de los búferes de cualquier indicador, así como otros datos parecidos.

Marcado de datos en el análisis de series temporales (Parte 5): Aplicación y comprobación de asesores usando Socket
En esta serie de artículos, presentaremos varias técnicas de marcado de series temporales que pueden producir datos que se ajusten a la mayoría de los modelos de inteligencia artificial (IA). El marcado dirigido de datos puede hacer que un modelo de IA entrenado resulte más relevante para las metas y objetivos del usuario, mejorando la precisión del modelo y ayudando a este a dar un salto de calidad.

Gráficos en la biblioteca DoEasy (Parte 99): Desplazando un objeto gráfico extendido con un punto de control
En el último artículo, implementamos la posibilidad de desplazar los puntos de control de un objeto gráfico extendido usando formularios de gestión. Ahora vamos a desplazar el objeto gráfico compuesto usando un punto (formulario) para gestionar el objeto gráfico.

Desarrollo de un sistema de repetición (Parte 59): Un nuevo futuro
La correcta comprensión de las cosas nos permite hacer más con menos esfuerzo. En este artículo, explicaré por qué es necesario ajustar la aplicación de la plantilla antes de que el servicio comience a interactuar realmente con el gráfico. Además, ¿qué tal si mejoramos el indicador del mouse para que podamos hacer más cosas con él?

Redes neuronales: así de sencillo (Parte 44): Estudiamos las habilidades de forma dinámica
En el artículo anterior, nos familiarizamos con el método DIAYN, que ofrece un algoritmo para el aprendizaje de diversas habilidades. El uso de las habilidades aprendidas puede aprovecharse en diversas tareas, pero estas habilidades pueden resultar bastante impredecibles, lo cual puede dificultar su uso. En este artículo, analizaremos un algoritmo para el aprendizaje de habilidades predecibles.

Gráficos en la biblioteca DoEasy (Parte 97): Procesamiento independiente del desplazamiento de los objetos de formulario
En el presente artículo, analizaremos la implementación del desplazamiento independiente de cualquier objeto de formulario con el ratón, y también complementaremos la biblioteca con mensajes de error y nuevas propiedades de transacciones previamente introducidos en el terminal y MQL5.

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 19): Ajustes necesarios
Lo que vamos a hacer aquí es preparar el terreno para que, cuando sea necesario agregar nuevas funciones al código, esto se haga de manera fluida y sencilla. El código actual aún no puede cubrir o manejar algunas cosas que serán necesarias para un progreso significativo. Necesitamos que todo se construya de manera que el esfuerzo de implementar algunas cosas sea lo más mínimo posible. Si esto se hace adecuadamente, tendremos la posibilidad de tener un sistema realmente muy versátil. Capaz de adaptarse muy fácilmente a cualquier situación que deba ser cubierta.

Perceptrón multicapa y algoritmo de retropropagación (Parte 3): Integración con el simulador de estrategias - Visión general (I)
El perceptrón multicapa es una evolución del perceptrón simple, capaz de resolver problemas separables no linealmente. Junto con el algoritmo de retropropagación, es posible entrenar eficientemente esta red neuronal. En la tercera parte de la serie sobre el perceptrón multicapa y la retropropagación, mostraremos cómo integrar esta técnica con el simulador de estrategias. Esta integración permitirá utilizar análisis de datos complejos y tomar mejores decisiones para optimizar las estrategias de negociación. En este resumen, analizaremos las ventajas y los retos de la aplicación de esta técnica.

Gráficos en la biblioteca DoEasy (Parte 98): Desplazamiento de los puntos de anclaje de los objetos gráficos estándar ampliados
En el presente artículo, continuaremos el desarrollo de los objetos gráficos estándar extendidos, y crearemos la funcionalidad necesaria para desplazar los puntos de pivote de los objetos gráficos compuestos usando los puntos de control para gestionar las coordenadas de los puntos de pivote del objeto gráfico.

Usamos algoritmos de optimización para ajustar los parámetros del asesor sobre la marcha
El artículo analizará diversos aspectos prácticos relacionados con el uso de algoritmos de optimización para encontrar los mejores parámetros de un asesor sobre la marcha, y también virtualizar las operaciones comerciales y la lógica del asesor. El lector puede usar este artículo a modo de instrucciones para implementar algoritmos de optimización en un asesor comercial.

Redes neuronales: así de sencillo (Parte 25): Practicando el Transfer Learning
En los últimos dos artículos, hemos creado una herramienta que nos permite crear y editar modelos de redes neuronales. Ahora es el momento de evaluar el uso potencial de la tecnología de Transfer Learning en ejemplos prácticos.

Filtrado y extracción de características en el dominio de la frecuencia
En este artículo, analizaremos la aplicación de filtros digitales a series temporales representadas en el dominio de la frecuencia con el fin de extraer características únicas que puedan resultar útiles para los modelos de predicción.

Redes neuronales en el trading: Transformador contrastivo de patrones
El transformador contrastivo de patrones analiza la situación del mercado tanto a nivel de velas individuales como de patrones completos, lo cual contribuye a mejorar la calidad de modelado de las tendencias del mercado, mientras que el uso del aprendizaje por contraste para emparejar las representaciones de velas y patrones conduce a la autorregulación y a la mejora de la precisión de la predicción.

Multibot en MetaTrader (Parte II): Plantilla dinámica mejorada
Desarrollando el tema del artículo anterior sobre el multibot, hemos decidido crear una plantilla más flexible y funcional, que tenga grandes posibilidades, y que se pueda utilizar eficazmente en freelance, además de como base para desarrollar asesores de divisa y periodo múltiple con posibilidad de integración con soluciones externas.

Estrategia de negociación de órdenes en cascada basada en cruces de EMA para MetaTrader 5
El artículo guía en la demostración de un algoritmo automatizado basado en cruces de EMA para MetaTrader 5. Información detallada sobre todos los aspectos de la demostración de un Asesor Experto en MQL5 y su prueba en MetaTrader 5, desde el análisis del comportamiento del rango de precios hasta la gestión de riesgos.

Redes neuronales en el trading: Modelos del espacio de estados
Una gran cantidad de los modelos que hemos revisado hasta ahora se basan en la arquitectura del Transformer. No obstante, pueden resultar ineficientes al trabajar con secuencias largas. En este artículo le propongo familiarizarse con una rama alternativa de pronóstico de series temporales basada en modelos del espacio de estados.

Desarrollo de un sistema de repetición (Parte 41): Inicio de la segunda fase (II)
Si hasta ahora todo te ha parecido correcto, significa que no estás pensando realmente a largo plazo. Donde empiezas a desarrollar aplicaciones y, con el tiempo, ya no necesitas programar nuevas aplicaciones. Solo tienes que conseguir que trabajen juntos. Veamos cómo terminar de montar el indicador del ratón.

Añadimos un LLM personalizado a un robot comercial (Parte 3): Entrenando tu propio LLM utilizando la CPU
Con el rápido desarrollo de la inteligencia artificial actual, los modelos de lenguaje (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar LLM potentes en nuestro trading algorítmico. Para la mayoría de las personas, es difícil ajustar estos poderosos modelos según sus necesidades, implementarlos localmente y luego aplicarlos al comercio algorítmico. Esta serie de artículos abordará paso a paso cómo lograr este objetivo.

Desarrollo de un robot de trading en Python (Parte 3): Implementamos un algoritmo comercial basado en el modelo
Hoy vamos a continuar con la serie de artículos sobre la creación de un robot comercial en Python y MQL5. En esta ocasión, resolveremos el problema relacionado con la creación de un algoritmo comercial en Python.

Redes neuronales: así de sencillo (Parte 38): Exploración auto-supervisada por desacuerdo (Self-Supervised Exploration via Disagreement)
Uno de los principales retos del aprendizaje por refuerzo es la exploración del entorno. Con anterioridad, hemos aprendido un método de exploración basado en la curiosidad interior. Hoy queremos examinar otro algoritmo: la exploración mediante el desacuerdo.

Interpretación de modelos: Una comprensión más profunda de los modelos de aprendizaje automático
El aprendizaje automático es un campo desafiante y gratificante para cualquiera, independientemente de la experiencia que tenga. En este artículo, nos sumergiremos en el funcionamiento interno de los modelos creados, exploraremos el complejo mundo de las funciones, las predicciones y las soluciones eficientes, y comprenderemos claramente la interpretación de los modelos. Asimismo, aprenderemos el arte de hacer concesiones, mejorar las predicciones, clasificar la importancia de los parámetros y tomar decisiones sólidas. Este artículo le ayudará a mejorar el rendimiento de los modelos de aprendizaje automático y a sacar más partido de sus metodologías.

Algoritmos de optimización de la población: Modificamos la forma y desplazamos las distribuciones de probabilidad y realizamos pruebas con el cefalópodo inteligente (Smart Cephalopod, SC)
Este artículo investigará qué efectos provoca el cambio de la forma de las distribuciones de probabilidad en el rendimiento de los algoritmos de optimización. Hoy realizaremos experimentos con el algoritmo de prueba "Smart Cephalopod" (SC) para evaluar la eficacia de distintas distribuciones de probabilidad en el contexto de problemas de optimización.

Kit de herramientas de negociación MQL5 (Parte 2): Ampliación e implantación de la biblioteca EX5 de gestión de posiciones
Aprenda a importar y utilizar bibliotecas EX5 en su código o proyectos MQL5. En este artículo de continuación, ampliaremos la biblioteca EX5 agregando más funciones de gestión de posiciones a la biblioteca existente y creando dos Asesores Expertos. El primer ejemplo utilizará el indicador técnico de promedio dinámico de índice variable para desarrollar un asesor experto en estrategia comercial de trailing stop, mientras que el segundo ejemplo utilizará un panel comercial para monitorear, abrir, cerrar y modificar posiciones. Estos dos ejemplos demostrarán cómo utilizar e implementar la biblioteca de gestión de posiciones EX5 actualizada.

Integración de modelos ML con el simulador de estrategias (Parte 3): Gestión de archivos CSV(II)
Este texto es una guía completa sobre la creación de una clase en MQL5 para la gestión eficaz de archivos CSV. En él comprenderás cómo se lleva a cabo la implementación de métodos de apertura, escritura, lectura y conversión de datos y cómo se pueden emplear para guardar y acceder a la información. Además, trataremos las restricciones y los aspectos cruciales a la hora de utilizar una clase de este tipo. Este es un material valioso para aquellos que deseen aprender a manipular archivos CSV en MQL5.

Redes neuronales: así de sencillo (Parte 50): Soft Actor-Critic (optimización de modelos)
En el artículo anterior, implementamos el algoritmo Soft Actor-Critic (SAC), pero no pudimos entrenar un modelo rentable. En esta ocasión, optimizaremos el modelo creado previamente para obtener los resultados deseados en su rendimiento.

Redes neuronales: así de sencillo (Parte 89): Transformador de descomposición de la frecuencia de señal (FEDformer)
Todos los modelos de los que hemos hablado anteriormente analizan el estado del entorno como una secuencia temporal. Sin embargo, las propias series temporales también pueden representarse como características de frecuencia. En este artículo, presentaremos un algoritmo que utiliza las características de frecuencia de una secuencia temporal para predecir los estados futuros.

DoEasy. Elementos de control (Parte 6): Control Panel, cambio automático del tamaño del contenedor según el contenido interno
En este artículo, continuaremos trabajando en el control "Panel" del objeto WinForms e implementaremos su cambio automático de tamaño según las dimensiones generales de los objetos Dock colocados dentro del panel. Además, añadiremos nuevas propiedades al objeto de biblioteca "Símbolo".

Aprendiendo a diseñar un sistema de trading con el oscilador Chaikin
Aquí tenemos un nuevo artículo de nuestra serie destinada al estudio de indicadores técnicos populares y la creación de sistemas comerciales basados en ellos. En este artículo, trabajaremos con el indicador Chaikin Oscillator, el oscilador de Chaikin.

Redes neuronales: así de sencillo (Parte 66): Problemática de la exploración en el entrenamiento offline
El entrenamiento offline del modelo se realiza sobre los datos de una muestra de entrenamiento previamente preparada. Esto nos ofrecerá una serie de ventajas, pero la información sobre el entorno estará muy comprimida con respecto al tamaño de la muestra de entrenamiento, lo que, a su vez, limitará el alcance del estudio. En este artículo, querríamos familiarizarnos con un método que permite llenar la muestra de entrenamiento con los datos más diversos posibles.

Estructuras en MQL5 y métodos para imprimir sus datos
En este artículo veremos las estructuras MqlDateTime, MqlTick, MqlRates, MqlBookInfo y los métodos para imprimir datos desde estas estructuras. Para imprimir todos los campos de una estructura, existe la función estándar ArrayPrint(), que muestra en un cómodo formato tabular los datos contenidos en un array con el tipo de estructura que se está procesando.

Algoritmos de optimización de la población: Algoritmo de búsqueda de sistema cargado (Charged System Search, CSS)
En este artículo, analizaremos otro algoritmo de optimización inspirado en la naturaleza inanimada: el algoritmo de búsqueda de sistema cargado (CSS). El objetivo de este artículo es presentar un nuevo algoritmo de optimización basado en los principios de la física y la mecánica.

El criterio de homogeneidad de Smirnov como indicador de la no estacionariedad de las series temporales
El artículo analiza uno de los criterios de homogeneidad no paramétricos más famosos: el criterio de Smirnov. Asimismo, se consideran tanto datos modelo como cotizaciones reales, y se ofrece un ejemplo de construcción de un indicador de no estacionariedad (iSmirnovDistance).

Medimos la informatividad de los indicadores
El aprendizaje automático se ha convertido en una técnica popular de desarrollo de estrategias. Por lo general, en el trading se presta más atención a la maximización de la rentabilidad y la precisión de los pronósticos. Al mismo tiempo, el procesamiento de los datos utilizados para la construcción de los modelos predictivos permanece en la periferia. En este artículo, analizaremos el uso del concepto de entropía para evaluar la idoneidad de los indicadores en la construcción de modelos predictivos, como se describe en el libro «Testing and Tuning Market Trading Systems» de Timothy Masters.

Desarrollo de un factor de calidad para los EAs
En este artículo, te explicaremos cómo desarrollar un factor de calidad que tu Asesor Experto (EA) pueda mostrar en el simulador de estrategias. Te presentaremos dos formas de cálculo muy conocidas (Van Tharp y Sunny Harris).

DoEasy. Elementos de control (Parte 28): Estilos de barra en el control «ProgressBar»
El artículo desarrollará los estilos de visualización y el texto de descripción para la barra de progreso del control ProgressBar.

Redes neuronales: así de sencillo (Parte 39): Go-Explore: un enfoque diferente sobre la exploración
Continuamos con el tema de la exploración del entorno en los modelos de aprendizaje por refuerzo. En este artículo, analizaremos otro algoritmo: Go-Explore, que permite explorar eficazmente el entorno en la etapa de entrenamiento del modelo.

Patrones de diseño en MQL5 (Parte 3): Patrones conductuales 1
En el nuevo artículo de la serie sobre patrones de diseño, nos ocuparemos de los patrones conductuales para comprender cómo crear de forma eficaz métodos de interacción entre los objetos creados. Diseñando estos patrones conductuales, podremos entender cómo construir software reutilizable, extensible y comprobable.

Redes neuronales: así de sencillo (Parte 87): Segmentación de series temporales
La previsión juega un papel esencial en el análisis de series temporales. En este nuevo artículo, hablaremos de las ventajas de la segmentación de series temporales.

Trabajando con las series temporales en la biblioteca DoEasy (Parte 53): Clase del indicador abstracto básico
En este artículo, vamos a analizar la creación de la clase del indicador abstracto que a continuación va a usarse como una clase básica para crear objetos de los indicadores estándar y personalizados de la biblioteca.

Redes neuronales: así de sencillo (Parte 54): Usamos un codificador aleatorio para una exploración eficiente (RE3)
Siempre que analizamos métodos de aprendizaje por refuerzo, nos enfrentamos al problema de explorar eficientemente el entorno. Con frecuencia, la resolución de este problema hace que el algoritmo se complique, llevándonos al entrenamiento de modelos adicionales. En este artículo veremos un enfoque alternativo para resolver el presente problema.