Desarrollo de un robot de trading en Python (Parte 3): Implementamos un algoritmo comercial basado en el modelo
Hoy vamos a continuar con la serie de artículos sobre la creación de un robot comercial en Python y MQL5. En esta ocasión, resolveremos el problema relacionado con la creación de un algoritmo comercial en Python.
Trabajando con los precios en la biblioteca DoEasy (Parte 59): Objeto para almacenar los datos de un tick
A partir de este artículo, procedemos a la creación de la funcionalidad de la biblioteca para trabajar con los datos de precios. Hoy, crearemos una clase del objeto que va a almacenar todos los datos de los precios que llegan con un tick.
DoEasy. Elementos de control (Parte 4): Elemento de control "Panel", parámetros Padding y Dock
En este artículo, implementaremos el funcionamiento de los parámetros de panel Padding (rellenado/márgenes internos en todos los lados del elemento) y Dock (la forma en que el objeto se ubica dentro del contenedor).
Cómo desarrollar un agente de aprendizaje por refuerzo en MQL5 con integración RestAPI (Parte 4): Organización de funciones en clases en MQL5
Este artículo examina la transición de la codificación procedimental a la programación orientada a objetos (POO) en MQL5, enfocándose en la integración con REST APIs. Discutimos la organización de funciones de solicitudes HTTP (GET y POST) en clases y destacamos ventajas como el encapsulamiento, la modularidad y la facilidad de mantenimiento. La refactorización de código se detalla, y se muestra la sustitución de funciones aisladas por métodos de clases. El artículo incluye ejemplos prácticos y pruebas.
Añadimos un LLM personalizado a un robot comercial (Parte 3): Entrenando tu propio LLM utilizando la CPU
Con el rápido desarrollo de la inteligencia artificial actual, los modelos de lenguaje (LLM) son una parte importante de la inteligencia artificial, por lo que deberíamos pensar en cómo integrar LLM potentes en nuestro trading algorítmico. Para la mayoría de las personas, es difícil ajustar estos poderosos modelos según sus necesidades, implementarlos localmente y luego aplicarlos al comercio algorítmico. Esta serie de artículos abordará paso a paso cómo lograr este objetivo.
Creación de un modelo de restricción de tendencia de velas (Parte 3): Detección de cambios en las tendencias al utilizar este sistema
Este artículo explora cómo las noticias económicas, el comportamiento de los inversores y diversos factores pueden influir en los cambios de tendencia del mercado. Incluye un vídeo explicativo y procede incorporando código MQL5 a nuestro programa para detectar los cambios de tendencia, alertarnos y tomar las medidas oportunas en función de las condiciones del mercado. Este artículo se basa en otros anteriores de la serie.
Aprendizaje automático y Data Science (Parte 30): La pareja ideal para predecir el mercado bursátil: redes neuronales convolucionales (CNN) y recurrentes (RNN)
En este artículo exploramos la integración dinámica de redes neuronales convolucionales (CNN) y redes neuronales recurrentes (RNN) en la predicción bursátil. Aprovechando la capacidad de las CNN para extraer patrones y la destreza de las RNN para manejar datos secuenciales. Veamos cómo esta potente combinación puede mejorar la precisión y la eficacia de los algoritmos de negociación.
Redes neuronales: así de sencillo (Parte 24): Mejorando la herramienta para el Transfer Learning
En el último artículo, creamos una herramienta capaz de crear y editar arquitecturas de redes neuronales. Hoy querríamos proponerles continuar con el desarrollo de esta herramienta, para lograr que resulte más fácil de usar. En cierto modo, esto se aleja un poco de nuestro tema, pero estará de acuerdo con que la organización del espacio de trabajo desempeña un papel importante en el resultado final.
Robot comercial multimodular en Python y MQL5 (Parte I): Creamos la arquitectura básica y los primeros módulos
Hoy desarrollaremos un sistema comercial modular que combina Python para el análisis de datos con MQL5 para la ejecución de transacciones. Sus cuatro módulos independientes supervisan en paralelo distintos aspectos del mercado: volúmenes, arbitraje, economía y riesgo, y utilizan RandomForest con 400 árboles para el análisis. Se hace especial hincapié en la gestión del riesgo, porque sin una gestión eficaz del riesgo, ni siquiera los algoritmos comerciales más avanzados sirven de mucho.
Algoritmos de optimización de la población: Algoritmo de búsqueda de sistema cargado (Charged System Search, CSS)
En este artículo, analizaremos otro algoritmo de optimización inspirado en la naturaleza inanimada: el algoritmo de búsqueda de sistema cargado (CSS). El objetivo de este artículo es presentar un nuevo algoritmo de optimización basado en los principios de la física y la mecánica.
Redes neuronales: así de sencillo (Parte 22): Aprendizaje no supervisado de modelos recurrentes
Continuamos analizando los algoritmos de aprendizaje no supervisado. Hoy hablaremos sobre el uso de autocodificadores en el entrenamiento de modelos recurrentes.
Redes neuronales: así de sencillo (Parte 23): Creamos una herramienta para el Transfer Learning
En esta serie de artículos, hemos mencionado el Aprendizaje por Transferencia más de una vez, pero hasta ahora no había sido más que una mención. Le propongo rellenar este vacío y analizar más de cerca el Aprendizaje por Transferencia.
Cómo empezar a trabajar con MQL5 Algo Forge
Le presentamos MQL5 Algo Forge, un portal especial para desarrolladores de algoritmos comerciales. El portal combina las características de Git con una interfaz fácil de usar para mantener y organizar proyectos dentro del ecosistema MQL5. Aquí podrá suscribirse a autores que le resulten interesantes, crear equipos y llevar a cabo proyectos conjuntos sobre trading algorítmico.
Permutación de las barras de precio en MQL5
En este artículo, presentaremos un algoritmo de permutación de barras de precio y detallaremos cómo se pueden utilizar las pruebas de permutación para identificar los casos en los que se ha fabricado el rendimiento de la estrategia para engañar a los posibles compradores del asesor.
Asesor Experto Grid-Hedge Modificado en MQL5 (Parte III): Optimización de una estrategia de cobertura simple (I)
En la tercera parte, volveremos a los Asesores Expertos Simple Hedge y Simple Grid que hemos desarrollado anteriormente. En esta ocasión, mejoraremos el Simple Hedge Expert Advisor usando el análisis matemático y el enfoque de fuerza bruta para utilizar de manera óptima la estrategia. Este artículo profundizará en la optimización matemática de estrategias, sentando las bases para futuras investigaciones sobre la optimización basada en códigos de partes posteriores.
Desarrollando un EA comercial desde cero (Parte 13): Times And Trade (II)
Hoy vamos a construir la segunda parte del sistema Times & Trade para analizar el mercado. En el artículo anterior Times & Trade ( I ) presenté un sistema alternativo para organizar un gráfico de manera que tengamos un indicador que nos permita interpretar las operaciones que se han ejecutado en el mercado lo más rápido posible.
Desarrollo de un EA comercial desde cero (Parte 30): ¿¡El CHART TRADE ahora como indicador?!
Vamos a hacer uso del Chart Trade nuevamente... pero ahora será un indicador y podrá o no estar presente en el gráfico.
DoEasy. Elementos de control (Parte 9): Reorganizando los métodos de los objetos WinForms, los controles "RadioButton" y "Button"
En este artículo, ordenaremos los nombres de las clases de objeto WinForms y crearemos los objetos WinForms Button y RadioButton.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 21): FOREX (II)
Vamos a continuar el armado del sistema para cubrir el mercado FOREX. Entonces, para resolver este problema, primero necesitaríamos declarar la carga de los ticks antes de cargar las barras previas. Esto soluciona el problema, pero al mismo tiempo obliga al usuario a seguir un tipo de estructura en el archivo de configuración que, en mi opinión, no tiene mucho sentido. La razón es que, al desarrollar la programación responsable de analizar y ejecutar lo que está en el archivo de configuración, podemos permitir que el usuario declare las cosas en cualquier orden.
Teoría de categorías en MQL5 (Parte 11): Grafos
El presente artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5. Aquí veremos cómo podemos integrar la teoría de grafos con los monoides y otras estructuras de datos al desarrollar una estrategia de cierre del sistema comercial.
Aprendizaje automático y ciencia de datos (Parte 15): SVM, una herramienta útil en el arsenal de los tráders
En este artículo analizaremos el papel que desempeña el método de máquinas de vectores soporte (Support Vector Machines, SVM) en la configuración del futuro del comercio. El artículo puede considerarse una guía detallada sobre cómo utilizar SVM para mejorar las estrategias comerciales, optimizar la toma de decisiones y abrir nuevas oportunidades en los mercados financieros. Hoy nos sumergiremos en el mundo de la SVM a través de aplicaciones reales, instrucciones paso a paso y revisiones por pares. Quizá esta herramienta indispensable le ayude a entender las complejidades del comercio moderno. En cualquier caso, la SVM se convertirá en una herramienta muy útil en el arsenal de todo tráder.
Visualización de transacciones en un gráfico (Parte 1): Seleccionar un periodo para el análisis
Aquí vamos a desarrollar un script desde cero que simplifica la descarga de pantallas de impresión de transacciones para analizar entradas comerciales. Toda la información necesaria sobre una única operación se puede mostrar cómodamente en un gráfico con la posibilidad de dibujar diferentes marcos temporales.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 11): Nacimiento del SIMULADOR (I)
Para poder usar datos que forman barras, debemos abandonar la repetición y comenzar a desarrollar un simulador. Utilizaremos las barras de 1 minuto precisamente porque nos ofrecen un nivel de complejidad mínimo.
Métodos de William Gann (Parte I): Creación del indicador de ángulos de Gann
¿Cuál es la esencia de la teoría de Gann? ¿Cómo se construyen los ángulos de Gann? Crearemos un indicador de ángulos de Gann para MetaTrader 5.
Desarrollamos un asesor experto multidivisas (Parte 21): Preparación para un experimento importante y optimización del código
Para continuar avanzando, sería bueno ver si podemos mejorar los resultados realizando periódicamente optimizaciones automáticas repetidas y generando un nuevo asesor experto. El escollo en muchos argumentos sobre el uso de la optimización de parámetros es la cuestión de cuánto tiempo pueden usarse los parámetros obtenidos para operar en el periodo futuro manteniendo los principales indicadores de rentabilidad y reducción en los niveles dados. ¿Es posible en general lograrlo?
Trading con spreads en el mercado Fórex utilizando el factor de estacionalidad
El en presente artículo analizaremos las posibilidades de formar y proporcionar datos sobre el uso del factor de estacionalidad al negociar con spreads en el mercado Fórex.
Multibot en MetaTrader (Parte II): Plantilla dinámica mejorada
Desarrollando el tema del artículo anterior sobre el multibot, hemos decidido crear una plantilla más flexible y funcional, que tenga grandes posibilidades, y que se pueda utilizar eficazmente en freelance, además de como base para desarrollar asesores de divisa y periodo múltiple con posibilidad de integración con soluciones externas.
Ciclos y Forex
Los ciclos son de gran importancia en nuestras vidas. El día y la noche, las estaciones, los días de la semana y muchos otros ciclos de distinta naturaleza están presentes en la vida de cualquier persona. En este artículo, consideraremos los ciclos en los mercados financieros.
Implementación de Breakeven en MQL5 (Parte 2): Breakeven basado en ATR y RRR
En este artículo se finaliza la implementación del breakeven por atr y rr en MQL5, junto con el desarrollo desde cero de una clase que permite cambiar fácilmente el tipo de breakeven sin necesidad de reingresar los parámetros. Se realizan múltiples backtests para evaluar el rendimiento de cada tipo, analizando sus ventajas y desventajas en el contexto del trading algorítmico.
Trabajando con los precios en la biblioteca DoEasy (Parte 64): Profundidad del mercado, clases del objeto de instantánea y del objeto de serie de instantáneas del DOM
En este artículo, vamos a crear dos clases: la clase del objeto de instantánea del DOM y la clase del objeto de serie de instantáneas del DOM, además, simularemos la creación de la serie de datos del DOM.
Desarrollando un cliente MQTT para MetaTrader 5: metodología de TDD
El presente artículo representa el primer intento de desarrollar un cliente MQTT nativo para MQL5. El MQTT es un protocolo de comunicación "publicación-suscripción". Es ligero, abierto, simple y está diseñado para implementarse con facilidad, lo cual permite su uso en muchas situaciones.
Desarrollo de un sistema de repetición (Parte 31): Proyecto Expert Advisor — Clase C_Mouse (V)
Desarrollar una manera de poner un cronómetro, de modo que durante una repetición/simulación, éste pueda decirnos cuánto tiempo falta, puede parecer a primera vista una tarea simple y de rápida solución. Muchos simplemente intentarían adaptar y usar el mismo sistema que se utiliza cuando tenemos el servidor comercial a nuestro lado. Pero aquí reside un punto que muchos quizás no consideran al pensar en tal solución. Cuando estás haciendo una repetición, y esto para no hablar del hecho de la simulación, el reloj no funciona de la misma manera. Este tipo de cosa hace complejo construir tal sistema.
Análisis de sentimientos y aprendizaje profundo para operar con EA y backtesting con Python
En este artículo, presentaremos un análisis de sentimiento y los modelos ONNX con Python para ser utilizados en un asesor experto. Un script ejecuta un modelo ONNX entrenado a partir de TensorFlow para predicciones de aprendizaje profundo, mientras que otro obtiene titulares de noticias y cuantifica el sentimiento utilizando IA.
Algoritmos de optimización de la población: Algoritmo electromagnético (ElectroMagnetism-like algorithm, ЕМ)
El artículo describe los principios, métodos y posibilidades del uso del algoritmo electromagnético (EM) en diversos problemas de optimización. El algoritmo EM es una herramienta de optimización eficiente capaz de trabajar con grandes cantidades de datos y funciones multidimensionales.
Escribimos el primer modelo de caja de cristal (Glass Box) en Python y MQL5
Los modelos de aprendizaje automático son difíciles de interpretar, y entender por qué los modelos no se ajustan a nuestras expectativas puede ayudarnos mucho a conseguir, en última instancia, el resultado deseado al utilizar técnicas tan avanzadas. Sin un conocimiento exhaustivo del funcionamiento interno del modelo, podría resultar difícil encontrar fallos que degraden el rendimiento. De este modo, podremos dedicar tiempo a crear funciones que no afecten a la calidad de la previsión. La conclusión es que, por muy bueno que sea un modelo, nos perderemos todas sus grandes ventajas por culpa de nuestros propios errores. Afortunadamente, existe una solución sofisticada y bien diseñada que permite ver con claridad lo que sucede bajo el capó del modelo.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 55): Clase de colección de indicadores
En este artículo, seguiremos desarrollando las clases de los objetos de indicador y sus colecciones. Crearemos la descripción para cada objeto de indicador y ajustaremos la clase de colección para un almacenamiento y obtención correctos de los objetos de indicador desde la lista de colección.
Integración de modelos ML con el simulador de estrategias (Parte 3): Gestión de archivos CSV(II)
Este texto es una guía completa sobre la creación de una clase en MQL5 para la gestión eficaz de archivos CSV. En él comprenderás cómo se lleva a cabo la implementación de métodos de apertura, escritura, lectura y conversión de datos y cómo se pueden emplear para guardar y acceder a la información. Además, trataremos las restricciones y los aspectos cruciales a la hora de utilizar una clase de este tipo. Este es un material valioso para aquellos que deseen aprender a manipular archivos CSV en MQL5.
Marcado de datos en el análisis de series temporales (Parte 3): Ejemplo de uso del marcado de datos
En esta serie de artículos, presentaremos varias técnicas de marcado de series temporales que pueden producir datos que se ajusten a la mayoría de los modelos de inteligencia artificial (IA). El marcado dirigido de datos puede hacer que un modelo de IA entrenado resulte más relevante para las metas y objetivos del usuario, mejorando la precisión del modelo y ayudando a este a dar un salto de calidad.
Redes neuronales: así de sencillo (Parte 58): Transformador de decisión (Decision Transformer-DT)
Continuamos nuestro análisis de los métodos de aprendizaje por refuerzo. Y en el presente artículo, presentaremos un algoritmo ligeramente distinto que considera la política del Agente en un paradigma de construcción de secuencias de acciones.
Estimamos la rentabilidad futura usando intervalos de confianza
En este artículo, nos adentraremos en la aplicación de técnicas de bootstrapping como forma de evaluar la rentabilidad futura de una estrategia automatizada.