开发先进的 ICT 交易系统:在订单块指标中实现信号
在本文中,您将学习如何基于订单簿交易量(市场深度)开发订单块(Order Blocks)指标,并使用缓冲区对其进行优化以提高准确性。这结束了项目的当前阶段,并为下一阶段做准备,下一阶段将包括实施风险管理类和使用指标生成的信号的交易机器人。
MQL5中交易策略的自动化实现(第六部分):掌握智能资金交易中的订单块(Order Block)检测技巧
在本文中,我们将运用纯粹的价格行为分析方法,在MQL5平台上实现订单块的自动化检测。我们将界定订单块的定义,实现其检测功能,并集成自动化交易执行系统。最后,我们通过回测来评估该策略的表现。
将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(三)—— 适配器微调
随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
创建MQL5交易管理员面板(第九部分):代码组织(1)
这次将深入探讨处理大型代码库时遇到的挑战。我们将探索在MQL5中进行代码组织的最佳实践,并采用一种实用方法来提升我们交易管理面板源代码的可读性和可扩展性。此外,我们致力于开发可复用的代码组件,这些组件有可能为其他开发者在其算法开发过程中带来益处。请继续阅读并参与讨论。
MQL5 简介(第 10 部分):MQL5 中使用内置指标的初学者指南
本文介绍如何使用 MQL5 中的内置指标,重点介绍如何使用基于项目的方法创建基于 RSI 的 EA 交易。您将学习获取和利用 RSI 值、处理流动性清扫以及使用图表对象增强交易可视化。此外,本文强调了有效的风险管理,包括设定基于百分比的风险、实施风险回报率以及应用风险修改来确保利润。
在MQL5中自动化交易策略(第5部分):开发自适应交叉RSI交易套件策略
在本文中,我们开发了自适应交叉RSI交易套件系统。该系统使用周期为14和50的移动平均线交叉来产生信号,并由一个周期为14的RSI过滤器进行确认。该系统包含一个交易日过滤器、带注释的信号箭头,以及一个用于监控的实时仪表盘。
这种方法确保了自动化交易中的精确性和适应性。
MQL5自动化交易策略(第四部分):构建多层级区域恢复系统
本文将介绍如何在MQL5中开发一个基于相对强弱指数(RSI)生成交易信号的多层级区域恢复(反转)系统(Multi-Level Zone Recovery System)。该系统通过动态数组结构管理多个信号实例,使区域恢复逻辑能够同时处理多重交易信号。通过这种设计,我们展示了如何在保持代码可扩展性和健壮性的前提下,有效应对复杂的交易管理场景。
逆公允价值缺口(IFVG)交易策略
当价格回到先前确定的公允价值缺口位置,且未表现出预期的支撑或阻力反应,而是无视该缺口时,便出现了逆公允价值缺口(IFVG)。这种“无视”现象可能预示着市场方向的潜在转变,并为反向交易提供优势。在本文中,我将介绍自己开发的量化方法,以及如何将IFVG作为一种策略,应用于MetaTrader 5智能交易系统(EA)中。
循环孤雌生殖算法(CPA)
本文提出了一种新的群体优化算法——循环孤雌生殖算法(CPA),其灵感源自蚜虫独特的生殖策略。该算法融合了两种生殖机制:孤雌生殖(无性繁殖)与有性生殖,并借助蚜虫的群体结构以及群体间的迁徙能力。算法的核心特点包括:在不同生殖策略之间自适应切换和通过“迁飞”机制实现群体间的信息交换。
在 MQL5 中自动化交易策略(第三部分):用于动态交易管理的RSI区域反转系统
在本文中,我们将在MQL5中创建一个基于RSI区域反转策略的EA系统,该系统使用RSI信号来触发交易,并采用反转策略来管理亏损。我们实现了一个“ZoneRecovery”类,用以自动化交易入场、反转逻辑和仓位管理。文章最后将进行系统的回测,以优化性能并提升 EA 的有效性。
人工部落算法(ATA)
文章提供了 ATA 优化算法关键组成部分和创新的详细讨论,其为一种进化方法,具有独特的双重行为系统,可根据状况进行调整。ATA 结合了个体和社会学习,同时使用交叉进行探索和迁徙,从而在陷入局部最优时找到解。
价格行为分析工具包开发(第八部分):指标看板
作为价格行为分析领域最强大的工具之一,指标看板(Metrics Board)旨在通过一键操作简化市场分析流程,实时提供关键市场指标数据。每个功能按钮均对应特定的功能,无论是分析高/低趋势、交易量还是其他关键指标。该工具能在您最需要的时候提供精准、实时的数据。让我们通过本文更深入地了解它的功能。
掌握 MQL5:从入门到精通(第六部分):开发 EA 交易的基础知识
本文继续针对初学者的系列文章。在这里我们将讨论开发 EA 交易的基本原则。我们将创建两个 EA:第一个 EA 不使用指标进行交易,使用挂单,第二个 EA 将基于标准 MA 指标,以当前价格开仓。在这里,我假设你不再是一个完全的初学者,并且对前几篇文章中的材料有相对较好的掌握。
在MQL5中实现基于经济日历新闻事件的突破型智能交易系统(EA)
重大经济数据发布前后市场波动率通常显著上升,为突破交易策略提供了理想的环境。在本文中,我们将阐述基于经济日历的突破策略的实现过程。我们将全面覆盖从创建用于解析和存储日历数据的类,到利用这些数据开发符合实际的回测系统,最终实现实盘交易执行代码的完整流程。
基于隐马尔可夫模型的趋势跟踪波动率预测
隐马尔可夫模型(HMMs)是强大的统计工具,可通过分析可观测的价格波动来识别潜在的市场状态。在交易领域,隐马尔可夫模型通过建模和预测市场状态的转变,可提升波动率预测的准确性,并为趋势跟踪策略提供依据。在本文中,我们将完整介绍一种趋势跟踪策略的开发流程,该策略利用隐马尔可夫模型预测波动率,并将其作为交易信号的过滤条件。
流动性攫取交易策略
流动性攫取交易策略是智能资金概念(SMC)的核心组成部分,旨在识别并利用市场中机构投资者的操作行为。该策略聚焦于高流动性区域(如支撑位或阻力位),在这些区域,大额订单可引发价格波动,随后市场恢复原有趋势。本文将详细阐释流动性攫取的概念,并概述如何在MQL5中开发流动性攫取交易策略的智能交易系统(EA)。
开发一款波段交易入场监控智能交易系统(EA)
随着年末临近,长期交易者往往会回顾市场历史数据,分析市场行为与趋势,以期预测未来可能的走势。本文将探讨如何使用MQL5开发一款长期交易入场监控智能交易系统(EA)。该系统的开发旨在解决因手动交易和缺乏自动化监控系统而导致的长期交易机会错失问题。我们将以交易量最为活跃的货币对之一为例,有效制定策略并开发我们的解决方案。
开发先进的 ICT 交易系统:在指标中实现订单区块
在本文中,我们将学习如何创建一个指标来检测、绘制订单区块并提醒订单块的缓解。我们还将详细研究如何在图表上识别这些区块,设置准确的提醒,并使用矩形可视化它们的位置,以更好地了解价格行为。该指标将成为遵循聪明钱概念和内圈交易者(ICT,Inner Circle Trader)方法的交易者的关键工具。
MQL5自动化交易策略(第二部分):基于一目均衡表与动量震荡器的云突破交易系统
在本文中,我们将创建一个智能交易系统(EA),利用一目均衡表指标与动量震荡器,实现云图突破策略的自动化交易。我们将逐步解析以下核心流程:指标句柄初始化、突破条件检测和自动化交易执行。此外,我们还实现追踪止损机制与动态仓位管理,以提升EA的盈利能力及对市场波动的适应性。
构建K线趋势约束模型(第九部分):多策略智能交易系统(EA)(三)
欢迎来到本趋势系列文章的第三部分!今天,我们将深入探讨如何利用背离(Divergence)策略,在既有的日线趋势中识别最优入场点。同时,我们将引入一种定制化的利润锁定机制——其功能类似于追踪止损(Trailing Stop-Loss),但经过独特的优化升级。此外,我们还将把趋势约束智能交易系统升级为更高级版本,新增一项交易执行条件以完善现有策略框架。随着内容推进,我们将持续探索MQL5在算法开发中的实际应用,为您提供更深入的见解与可落地的技术方案。
使用凯利准则与蒙特卡洛模拟的投资组合风险模型
几十年来,交易员们一直使用凯利准则公式来确定投资或赌注的最优资本配置比例,其目标是在最大化长期增长的同时,最小化破产风险。然而,对于个人交易者而言,盲目地依据单次回测的结果来遵循凯利准则往往是危险的,因为在实盘交易中,交易优势会随着时间的推移而减弱,并且过往业绩并不能保证未来的结果。在本文中,我将提出一种在 MetaTrader 5 平台中,为一个或多个智能交易系统进行风险分配的现实方法,该方法将融合来自 Python 的蒙特卡洛模拟结果。
如何构建并优化基于成交量的交易系统——蔡金资金流指标(Chaikin Money Flow - CMF)
在本文中,我们将在明确如何构建、计算和使用基于成交量的指标——蔡金资金流指标(Chaikin Money Flow,CMF)之后,对该指标进行介绍。我们将了解如何构建自定义指标。我们会分享一些可用的简单策略,然后对这些策略进行测试,以了解哪种策略更优。
在MQL5中创建交易管理员面板(第八部分):分析面板
今天,我们将深入探讨如何在管理员面板EA的一个集成专用窗口中,加入有用的交易指标。本次讨论的重点是使用MQL5实现一个分析面板,并强调其所提供数据对交易管理员的价值。其影响主要体现在教学意义上,因为整个开发过程能提炼出宝贵的经验教训,使新手和经验丰富的开发者都能从中受益。此功能展示了我们开发的系列工具在为交易经理配备先进软件工具方面所提供的无限可能。此外,作为对交易管理员面板能力的持续扩展,我们将探讨PieChart(饼图)和ChartCanvas(图表画布)类的实现。
使用MQL5经济日历进行交易(第五部分):添加响应式控件和过滤按钮的增强型仪表盘
在本文中,我们创建了用于货币对过滤、重要性级别过滤、时间过滤以及取消选项的按钮,以改进仪表盘的控制功能。通过编程让这些按钮能够动态响应用户操作,实现无缝交互。我们还对其行为进行了自动化处理,以便在仪表盘上实时反映变化。这样就提升了面板的整体功能性、灵活性和响应速度。
将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(二)-LoRA-调优
随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
利用 MQL5 经济日历进行交易(第四部分):在仪表盘中实现实时新闻更新
本文通过实现实时新闻更新来增强我们的经济日历仪表盘,以保持市场信息的时效性和可操作性。我们在 MQL5 中集成了实时数据获取技术,以持续更新仪表盘上的事件,从而提升界面的响应速度。此更新优化确保我们可以直接从仪表盘获取最新的经济新闻,从而基于最新数据优化交易决策。
使用 MQL5 经济日历进行交易(第三部分):添加货币、重要性和时间过滤器
在本文中,我们将在 MQL5 经济日历仪表板中添加过滤器,以便通过货币、重要性和时间来细化新闻事件的显示。我们首先为每个类别建立过滤标准,然后将这些标准集成到仪表板中,以仅显示相关事件。最后,我们确保每个过滤器都能动态更新,为交易者提供专注的、实时的经济信息。
基于交易量的神经网络分析:未来趋势的关键
本文探讨了通过将技术分析原理与 LSTM 神经网络架构相结合,基于交易量分析来改进价格预测准确性的可能性。文章特别关注异常交易量的检测与解读、聚类方法的使用,以及基于交易量的特征创建及其在机器学习背景下的定义。
在Python中使用Numba对交易策略进行快速测试
本文实现了一个快速策略测试器,它使用Numba对机器学习模型进行快速策略测试。它的速度比纯 Python 策略回测器快 50 倍。作者推荐使用该库来加速数学计算,尤其是那些涉及循环的计算。
使用莱文贝格-马夸尔特(Levenberg-Marquardt,LM)算法训练多层感知器
本文介绍了一种用于训练前馈神经网络的莱文贝格-马夸尔特(Levenberg-Marquardt,LM)算法的实现。与Python的scikit-learn库中的算法进行性能比较分析。初步探讨更简便的学习方法,如梯度下降、带动量的梯度下降和随机梯度下降。
使用 MetaTrader 5 在 Python 中查找自定义货币对形态
外汇市场是否存在重复的形态和规律?我决定使用 Python 和 MetaTrader 5 创建自己的形态分析系统。一种数学和编程的共生关系,用于征服外汇。
构建K线趋势约束模型(第九部分):多策略EA(2)
理论上,可以集成至EA中的策略数量没有上限。然而,每新增一种策略都会提升算法复杂度。通过融合多策略架构,EA能够更灵活地适应不同市场环境,从而可能提升整体盈利能力。今天,我们将探讨如何通过MQL5实现理查德·唐奇安(Richard Donchian)的经典通道突破策略,以此进一步拓展我们的趋势约束型EA功能体系。
如何使用 MetaTrader 和 Google Sheets 创建交易日志
使用 MetaTrader 和 Google Sheets 创建交易日志!您将学习如何通过 HTTP POST 同步您的交易数据,并使用 HTTP 请求来获取它。最后,您有一个交易日志,可以帮助您有效地跟踪您的交易。
人工喷淋算法(ASHA)
本文介绍了人工喷淋算法(Artificial Showering Algorithm,ASHA),这是一种为解决一般优化问题而开发的新型元启发式方法。基于对水流和积聚过程的模拟,该算法构建了理想场的概念,其中要求每个资源单元(水)找到最优解。我们将了解 ASHA 如何调整流和累积原则来有效地分配搜索空间中的资源,并查看其实现和测试结果。