构建MQL5自优化智能交易系统(EA)(第四部分):动态头寸规模调整
成功运用算法交易需要持续的跨学科学习。然而,无限的可能性可能会耗费数年努力,却无法取得切实成果。为解决这一问题,我们提出一个循序渐进增加复杂性的框架,让交易者能够迭代优化策略,而非将无限时间投入不确定的结果中。
在 MQL5 中自动化交易策略(第三部分):用于动态交易管理的RSI区域反转系统
在本文中,我们将在MQL5中创建一个基于RSI区域反转策略的EA系统,该系统使用RSI信号来触发交易,并采用反转策略来管理亏损。我们实现了一个“ZoneRecovery”类,用以自动化交易入场、反转逻辑和仓位管理。文章最后将进行系统的回测,以优化性能并提升 EA 的有效性。
价格行为分析工具包开发(第九部分):外部数据流
本文将利用专为高级分析而设计的外部库,探索一个全新的分析维度。这些库(如pandas)提供了强大的工具,用于处理和解读复杂数据,使交易者能够更深入地洞察市场动态。通过整合此类技术,我们能够整合原始数据与可执行策略之间的差距。加入我们,共同为这一创新方法奠定基础,并释放技术与交易专业知识相结合的潜力。
使用MQL5和Python集成经纪商API与智能交易系统
在本文中,我们将探讨如何将MQL5与Python相结合,以执行与经纪商相关的操作。想象一下,您有一个持续运行的智能交易系统(EA),它托管在虚拟专用服务器(VPS)上,并代表您执行交易。在某个阶段,EA 管理资金的能力变得至关重要。这包括为您的交易账户入金和发起出金等操作。在本文中,我们将阐明这些功能的优势和具体实现方法,从而确保将资金管理无缝地集成到您的交易策略中。敬请关注!
交易中的神经网络:多智代自适应模型(终篇)
在上一篇文章中,我们讲述了多智代自适应框架 MASA,它结合了强化学习方法和自适应策略,在动荡的市场条件下提供了盈利能力、及风险之间的和谐平衡。我们已在该框架内构建了单个智代的功能。在本文中,我们继续我们已开始的工作,令其得出合乎逻辑的结论。
掌握 MQL5:从入门到精通(第六部分):开发 EA 交易的基础知识
本文继续针对初学者的系列文章。在这里我们将讨论开发 EA 交易的基本原则。我们将创建两个 EA:第一个 EA 不使用指标进行交易,使用挂单,第二个 EA 将基于标准 MA 指标,以当前价格开仓。在这里,我假设你不再是一个完全的初学者,并且对前几篇文章中的材料有相对较好的掌握。
价格行为分析工具包开发(第七部分):信号脉冲智能交易系统(EA)
借助“信号脉冲(Signal Pulse)”这款MQL5智能交易系统(EA),释放多时间框架分析的潜力。该EA整合了布林带(Bollinger Bands)和随机震荡器(Stochastic Oscillator),以提供准确、高概率的交易信号。了解如何实施这一策略,并使用自定义箭头有效直观地显示买入和卖出机会。非常适合希望借助多时间框架的自动化分析来提升自身判断能力的交易者。
交易中的神经网络:搭配区段注意力的参数效率变换器(终篇)
在之前的工作中,我们讨论了 PSformer 框架的理论层面,其中包括经典变换器架构的两大创新:参数共享(PS)机制,以及时空区段注意力(SegAtt)。在本文中,我们继续实现所提议方式的 MQL5 版本。
交易中的神经网络:搭配区段注意力的参数效率变换器(PSformer)
本文讲述新的 PSformer 框架,其适配雏形变换器架构,解决与多元时间序列预测相关的问题。该框架基于两项关键创新:参数共享(PS)机制,和区段注意力(SegAtt)。
构建自优化型MQL5智能交易系统(EA)(第3部分):动态趋势跟踪与均值回归策略
金融市场通常被静态划分为震荡市或趋势市两种模式。这种简化分类虽便于短期交易决策。然而,却与真实市场行为脱节。在本文中,我们将深入探讨市场如何精准地在这两种模式间切换,并利用这方面的认知提升算法交易策略的可靠性。
让新闻交易轻松上手(第六部分):执行交易(3)
在本文中,将实现基于新闻事件ID对单个新闻事件进行新闻筛选。此外,还将对先前的SQL查询进行改进,以提供更多信息或减少查询运行时间。另外,还将使前几篇文章中构建的代码具备实际功能。
交易中的神经网络:降低锐度强化变换器效率(终章)
SAMformer 为长期时间序列预测中变换器模型的主要缺点,譬如训练复杂性,及小型数据集的普适能力差,提供了解决方案。其浅层架构和锐度感知优化有助于避免次优的局部最小值。在本文中,我们将继续利用 MQL5 实现方式,并评估其实用价值。
交易中的神经网络:降低锐度强化变换器效率(SAMformer)
训练变换器模型需要大量数据,并且往往很困难,因为模型不擅长类推到小型数据集。SAMformer 框架通过避免糟糕的局部最小值来帮助解决这个问题。即使在有限的训练数据集上,也能提升模型的效率。
交易中的神经网络:优化时间序列预测变换器(LSEAttention)
LSEAttention 框架改进变换器架构。它是专为长期多变量时间序列预测而设计。该方法作者提议的方法能应用于解决雏形变换器经常遇到的熵坍缩、及学习不稳定问题。
开发一款波段交易入场监控智能交易系统(EA)
随着年末临近,长期交易者往往会回顾市场历史数据,分析市场行为与趋势,以期预测未来可能的走势。本文将探讨如何使用MQL5开发一款长期交易入场监控智能交易系统(EA)。该系统的开发旨在解决因手动交易和缺乏自动化监控系统而导致的长期交易机会错失问题。我们将以交易量最为活跃的货币对之一为例,有效制定策略并开发我们的解决方案。
构建K线趋势约束模型(第十部分):战略均线金叉与死叉(智能交易系统EA)
您是否知道,基于移动平均线交叉的金叉和死叉策略,是识别长期市场趋势最为可靠的指标之一?当短期移动平均线上穿长期移动平均线时,金叉发出看涨趋势信号;而当短期移动平均线下穿长期移动平均线时,死叉则表明看跌趋势。尽管这些策略简单且有效,但手动运用时往往会导致错失机会或延迟交易。
精通 MQL5 文件操作:从基础 I/O 到构建自定义 CSV 读取器
本文聚焦于 MQL5 文件处理的核心技术,涵盖交易日志、CSV 处理以及外部数据集成。它既提供概念性理解,也包含实用的编程指导。读者将逐步学习如何构建一个自定义的 CSV 导入器类,从而掌握适用于实际应用的实用技能。
MQL5自动化交易策略(第二部分):基于一目均衡表与动量震荡器的云突破交易系统
在本文中,我们将创建一个智能交易系统(EA),利用一目均衡表指标与动量震荡器,实现云图突破策略的自动化交易。我们将逐步解析以下核心流程:指标句柄初始化、突破条件检测和自动化交易执行。此外,我们还实现追踪止损机制与动态仓位管理,以提升EA的盈利能力及对市场波动的适应性。
构建K线趋势约束模型(第九部分):多策略智能交易系统(EA)(三)
欢迎来到本趋势系列文章的第三部分!今天,我们将深入探讨如何利用背离(Divergence)策略,在既有的日线趋势中识别最优入场点。同时,我们将引入一种定制化的利润锁定机制——其功能类似于追踪止损(Trailing Stop-Loss),但经过独特的优化升级。此外,我们还将把趋势约束智能交易系统升级为更高级版本,新增一项交易执行条件以完善现有策略框架。随着内容推进,我们将持续探索MQL5在算法开发中的实际应用,为您提供更深入的见解与可落地的技术方案。
价格行为分析工具包开发(第五部分):波动率导航智能交易系统(Volatility Navigator EA)
判断市场方向或许相对简单,但把握入场时机却颇具挑战。作为“价格行为分析工具包开发”系列文章的一部分,我很高兴再为大家介绍一款能够提供入场点、止盈水平和止损设置位置的工具。为实现这一目标,我们采用了MQL5编程语言。让我们在本文中深入探讨每一步。
外汇投资组合优化:风险价值理论与马科维茨理论的融合
外汇市场中的投资组合交易是如何运作的?我们如何将用于优化投资组合权重的马科维茨投资组合理论与用于优化投资组合风险的VaR模型结合起来?我们基于投资组合理论创建一个EA,一方面,我们将获得低风险;另一方面,获得可接受的长期盈利能力。
在MQL5中创建交易管理员面板(第八部分):分析面板
今天,我们将深入探讨如何在管理员面板EA的一个集成专用窗口中,加入有用的交易指标。本次讨论的重点是使用MQL5实现一个分析面板,并强调其所提供数据对交易管理员的价值。其影响主要体现在教学意义上,因为整个开发过程能提炼出宝贵的经验教训,使新手和经验丰富的开发者都能从中受益。此功能展示了我们开发的系列工具在为交易经理配备先进软件工具方面所提供的无限可能。此外,作为对交易管理员面板能力的持续扩展,我们将探讨PieChart(饼图)和ChartCanvas(图表画布)类的实现。
交易中的神经网络:双曲型潜在扩散模型(终篇)
正如 HypDIff 框架所提议,使用各向异性扩散过程针对双曲潜在空间中的初始数据进行编码,助力保留当前市场状况的拓扑特征,并提升其分析品质。在上一篇文章中,我们开始利用 MQL5 实现所提议的方式。今天,我们将继续我们已开始的工作,并得出合乎逻辑的结论。
使用MQL5经济日历进行交易(第五部分):添加响应式控件和过滤按钮的增强型仪表盘
在本文中,我们创建了用于货币对过滤、重要性级别过滤、时间过滤以及取消选项的按钮,以改进仪表盘的控制功能。通过编程让这些按钮能够动态响应用户操作,实现无缝交互。我们还对其行为进行了自动化处理,以便在仪表盘上实时反映变化。这样就提升了面板的整体功能性、灵活性和响应速度。
MQL5 交易工具包(第 3 部分):开发挂单管理 EX5 库
了解如何在 MQL5 代码或项目中开发和实现全面的挂单 EX5库。本文将向您展示如何创建一个全面的挂单管理 EX5 库,并通过构建交易面板或图形用户界面(GUI)来指导您导入和实现它。EA 交易订单面板将允许用户直接从图表窗口上的图形界面打开、监控和删除与指定幻数相关的挂单。
价格行为分析工具包开发系列(第4部分):分析预测型EA
我们不再局限于仅在图表上查看分析后的指标,而是将视野拓展至更广阔的范畴,其中包括与Telegram的集成。这一增强功能使得重要结果能够通过Telegram应用程序直接发送至您的移动设备。请随我们一同在本篇文章中探索这一过程。
利用 MQL5 经济日历进行交易(第四部分):在仪表盘中实现实时新闻更新
本文通过实现实时新闻更新来增强我们的经济日历仪表盘,以保持市场信息的时效性和可操作性。我们在 MQL5 中集成了实时数据获取技术,以持续更新仪表盘上的事件,从而提升界面的响应速度。此更新优化确保我们可以直接从仪表盘获取最新的经济新闻,从而基于最新数据优化交易决策。
使用 MQL5 经济日历进行交易(第三部分):添加货币、重要性和时间过滤器
在本文中,我们将在 MQL5 经济日历仪表板中添加过滤器,以便通过货币、重要性和时间来细化新闻事件的显示。我们首先为每个类别建立过滤标准,然后将这些标准集成到仪表板中,以仅显示相关事件。最后,我们确保每个过滤器都能动态更新,为交易者提供专注的、实时的经济信息。
创建 MQL5-Telegram 集成 EA 交易(第 7 部分):图表指标自动化的命令分析
在本文中,我们将探讨如何将 Telegram 命令与 MQL5 集成,以自动在交易图表上添加指标。我们涵盖了解析用户命令、在MQL5中执行命令以及测试系统以确保基于指标的交易顺利进行的过程
交易中的神经网络:节点-自适应图形表征(NAFS)
我们邀请您领略 NAFS(节点-自适应特征平滑)方法,这是一种创建节点表征的非参数方法,不需要参数训练。NAFS 提取每个给定节点的邻域特征,然后把这些特征自适应组合,从而形成最终表征。
如何使用 MetaTrader 和 Google Sheets 创建交易日志
使用 MetaTrader 和 Google Sheets 创建交易日志!您将学习如何通过 HTTP POST 同步您的交易数据,并使用 HTTP 请求来获取它。最后,您有一个交易日志,可以帮助您有效地跟踪您的交易。
交易中的神经网络:对比形态变换器(终章)
在本系列的上一篇文章中,我们考察了“原子-基序对比变换器”(AMCT)框架,其用对比学习来发现各个级别的关键形态,从基本元素到复杂结构。在本文中,我们将继续利用 MQL5 实现 AMCT 方式。
创建一个基于布林带PIRANHA策略的MQL5 EA
在本文中,我们将创建一个MQL5 EA,它基于PIRANHA策略,并使用布林带来提升交易表现。我们会系统梳理该策略的核心原理、代码实现细节,以及测试与优化方法。并助您轻松将 EA 部署到实际的交易环境中。