MQL5 开发的自动交易示例的文章

icon

EA 是编程的 '巅峰',并且是每一个自动交易开发者的渴望目标。请阅读本部分中的文章,创建您自己的交易机器人。通过下面介绍的步骤,您将了解到如何创建,调试和测试自动交易系统。

这些文章不仅教导 MQL5 编程,而且也演示了如何实现交易思想和技巧。您将了解如何编写跟踪止损,如何运用资金管理,如何获取指标值,等等。

添加一个新的文章
最近 | 最佳
preview
神经网络变得轻松(第三十七部分):分散关注度

神经网络变得轻松(第三十七部分):分散关注度

在上一篇文章中,我们讨论了在其架构中使用关注度机制的关系模型。 这些模型的具体特征之一是计算资源的密集功用。 在本文中,我们将研究于自我关注度模块内减少计算操作数量的机制之一。 这将提高模型的常规性能。
preview
神经网络变得简单(第 66 部分):离线学习中的探索问题

神经网络变得简单(第 66 部分):离线学习中的探索问题

使用准备好的训练数据集中的数据对模型进行离线训练,这种方法虽然有一定的优势,但其不利的一面是,环境信息被大大压缩到训练数据集的大小。这反过来又限制了探索的可能性。在本文中,我们将探讨一种方法,这种方法可以用尽可能多样化的数据来填充训练数据集。
preview
MQL5 简介(第 5 部分):MQL5 数组函数入门指南

MQL5 简介(第 5 部分):MQL5 数组函数入门指南

在第 5 部分中探索 MQL5 数组的世界,该部分专为绝对初学者设计。本文简化了复杂的编码概念,重点在于清晰性和包容性。加入我们的学习者社区,在这里解决问题,分享知识!
preview
构建自优化型MQL5智能交易系统(EA)(第3部分):动态趋势跟踪与均值回归策略

构建自优化型MQL5智能交易系统(EA)(第3部分):动态趋势跟踪与均值回归策略

金融市场通常被静态划分为震荡市或趋势市两种模式。这种简化分类虽便于短期交易决策。然而,却与真实市场行为脱节。在本文中,我们将深入探讨市场如何精准地在这两种模式间切换,并利用这方面的认知提升算法交易策略的可靠性。
preview
算法交易中的风险管理器

算法交易中的风险管理器

本文的目标是证明在算法交易中使用风险管理器的必要性,并在一个单独的类中实现控制风险的策略,以便每个人都可以验证标准化的风险管理方法在金融市场日内交易和投资中的有效性。在本文中,我们将为算法交易创建一个风险管理类。本文是上一篇文章的延续,在前文中我们讨论了为手动交易创建风险管理器。
preview
MQL5 中的范畴论 (第 6 部分):单态回拉和满态外推

MQL5 中的范畴论 (第 6 部分):单态回拉和满态外推

范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。
preview
神经网络变得轻松(第五十四部分):利用随机编码器(RE3)进行高效研究

神经网络变得轻松(第五十四部分):利用随机编码器(RE3)进行高效研究

无论何时我们研究强化学习方法时,我们都会面对有效探索环境的问题。解决这个问题通常会导致算法更复杂性,以及训练额外模型。在本文中,我们将看看解决此问题的替代方法。
preview
神经网络变得轻松(第十六部分):聚类运用实践

神经网络变得轻松(第十六部分):聚类运用实践

在上一篇文章中,我们为数据聚类创建了一个类。 在本文中,我想分享在解决实际交易任务时应用所获结果会遇到的可能变体。
preview
交易中的神经网络:基于双注意力的趋势预测模型

交易中的神经网络:基于双注意力的趋势预测模型

我们继续讨论时间序列的分段线性表示的运用,这在前一篇文章中已经开始。今天,我们要看看如何将该方法与其它时间序列分析方法相结合,从而提高价格趋势预测品质。
preview
如何将聪明资金概念(SMC)与 RSI 指标结合到 EA 中

如何将聪明资金概念(SMC)与 RSI 指标结合到 EA 中

聪明资金概念(结构突破)与 RSI 指标相结合,可根据市场结构做出明智的自动交易决策。
preview
MQL5 交易策略自动化(第十部分):开发趋势盘整动量策略

MQL5 交易策略自动化(第十部分):开发趋势盘整动量策略

在本文中,我们将基于MQL5开发趋势盘整动量策略EA。我们将结合双移动平均线交叉与 RSI 和 CCI 动量过滤器来生成交易信号。我们还将对EA进行回测,以及为提升其在真实交易环境下的表现而进行的优化。
preview
神经网络变得轻松(第五十二部分):研究乐观情绪和分布校正

神经网络变得轻松(第五十二部分):研究乐观情绪和分布校正

由于模型是基于经验复现缓冲区进行训练,故当前的扮演者政策会越来越远离存储的样本,这会降低整个模型的训练效率。在本文中,我们将查看一些能在强化学习算法中提升样本使用效率的算法。
preview
MQL5 交易策略自动化(第十部分):开发趋势盘整动量策略

MQL5 交易策略自动化(第十部分):开发趋势盘整动量策略

在本文中,我们将基于MQL5开发趋势盘整动量策略EA。我们将结合双移动平均线交叉与 RSI 和 CCI 动量过滤器来生成交易信号。我们还将对EA进行回测,以及为提升其在真实交易环境下的表现而进行的优化。
preview
在 MQL5 中创建做市商算法

在 MQL5 中创建做市商算法

做市商是如何运作的?让我们探讨一下这个问题,创建一个初级的做市商算法。
preview
比尔·威廉姆斯策略(或结合其他指标和预测)

比尔·威廉姆斯策略(或结合其他指标和预测)

在这篇文章中,我们将探讨比尔·威廉姆斯的一个著名策略,对其进行讨论,并尝试通过其他指标和预测来改进这一策略。
preview
带有预测性的三角套利

带有预测性的三角套利

本文简化了三角套利的过程,向您展示如何利用预测和专业软件更明智地进行货币交易,即使您是新手也能轻松入门。准备好凭借专业知识进行交易了吗?
preview
神经网络变得简单(第 62 部分):在层次化模型中运用决策转换器

神经网络变得简单(第 62 部分):在层次化模型中运用决策转换器

在最近的文章中,我们已看到了运用决策转换器方法的若干选项。该方法不仅可以分析当前状态,还可以分析先前状态的轨迹,以及在其中执行的动作。在本文中,我们将专注于在层次化模型中运用该方法。
preview
神经网络变得简单(第 89 部分):频率增强分解变换器(FEDformer)

神经网络变得简单(第 89 部分):频率增强分解变换器(FEDformer)

到目前为止,我们研究过的所有模型在分析环境状态时都将其当作时间序列。不过,时间序列也能以频率特征的形式表示。在本文中,我将向您介绍一种算法,即利用时间序列的频率分量来预测未来状态。
preview
使用MQL5和Python构建自优化EA(第二部分):调整深度神经网络

使用MQL5和Python构建自优化EA(第二部分):调整深度神经网络

机器学习模型带有各种可调节的参数。在本系列文章中,我们将探讨如何使用SciPy库来定制您的AI模型,使其适应特定的市场。
preview
构建K线图的趋势约束模型(第四部分):为各个趋势波段自定义显示样式

构建K线图的趋势约束模型(第四部分):为各个趋势波段自定义显示样式

在本文中,我们将探讨强大的MQL5语言在MetaTrader 5上绘制各种指标样式的能力。我们还将研究脚本及其在模型中的应用。
preview
您应当知道的 MQL5 向导技术(第 17 部分):多币种交易

您应当知道的 MQL5 向导技术(第 17 部分):多币种交易

当经由向导组装一款智能系统时,默认情况下,跨多币种交易不可用。我们研究了 2 种可能采取的技巧,可令交易者在同一时间据多个品种测试他们的思路。
preview
重塑经典策略(第四部分):标普500指数与美国国债

重塑经典策略(第四部分):标普500指数与美国国债

在本系列文章中,我们使用现代算法分析经典交易策略,以确定是否可以利用人工智能改进这些策略。在今天的文章中,我们将重新审视一种利用标普500指数与美国国债之间关系的经典交易方法。
preview
交易中的神经网络:状态空间模型

交易中的神经网络:状态空间模型

到目前为止,我们审阅的大量模型都是基于变换器架构。不过,在处理长序列时,它们或许效率低下。在本文中,我们将领略一种替代方向,即基于状态空间模型的时间序列预测。
preview
神经网络变得简单(第 58 部分):决策转换器(DT)

神经网络变得简单(第 58 部分):决策转换器(DT)

我们继续探索强化学习方法。在本文中,我将专注于一种略有不同的算法,其参考智能体政策构造一连串动作的范式。
preview
在MQL5中开发马丁格尔(Martingale)区域恢复策略

在MQL5中开发马丁格尔(Martingale)区域恢复策略

本文详细探讨了创建基于区域恢复交易算法的EA需要实施的步骤。这有助于自动化该系统,从而为算法交易者节省时间。
preview
神经网络变得简单(第 64 部分):保守加权行为克隆(CWBC)方法

神经网络变得简单(第 64 部分):保守加权行为克隆(CWBC)方法

据前几篇文章中所执行测试的结果,我们得出的结论是,训练策略的最优性很大程度上取决于所采用的训练集。在本文中,我们将熟悉一种相当简单,但有效的方法来选择轨迹,并据其训练模型。
preview
神经网络变得轻松(第四十七部分):连续动作空间

神经网络变得轻松(第四十七部分):连续动作空间

在本文中,我们扩展了代理者的任务范围。训练过程将包括一些资金和风险管理等方面,这是任何交易策略不可或缺的部分。
preview
频域中的滤波和特征提取

频域中的滤波和特征提取

在本文中,我们探索了在时间序列由数字滤波器在频域上进行表达的应用,如此即可提取也许对预测模型有用的独特特征。
preview
用置信区间估计未来效能

用置信区间估计未来效能

在这篇文章中,我们深入研究自举法技术的应用,作为评估自动化策略未来效能的一种手段。
preview
创建一个基于布林带PIRANHA策略的MQL5 EA

创建一个基于布林带PIRANHA策略的MQL5 EA

在本文中,我们将创建一个MQL5 EA,它基于PIRANHA策略,并使用布林带来提升交易表现。我们会系统梳理该策略的核心原理、代码实现细节,以及测试与优化方法。并助您轻松将 EA 部署到实际的交易环境中。
preview
MQL5中的替代风险回报标准

MQL5中的替代风险回报标准

在这篇文章中,我们介绍了几种被称为夏普比率(Sharpe ratio)替代品的风险回报标准的实现,并检查了假设的权益曲线以分析其特征。
preview
解构客户端交易策略的示例

解构客户端交易策略的示例

本文使用框图来检查位于终端的 Experts\Free Robots 文件夹中的基于烛形的训练 EA 的逻辑。
preview
神经网络变得简单(第 67 部分):按照过去的经验解决新任务

神经网络变得简单(第 67 部分):按照过去的经验解决新任务

在本文中,我们将继续讨论收集数据至训练集之中的方法。显然,学习过程需要与环境不断互动。不过,状况可能会有所不同。
preview
交易中的神经网络:一种复杂的轨迹预测方法(Traj-LLM)

交易中的神经网络:一种复杂的轨迹预测方法(Traj-LLM)

在本文中,我想向您介绍一种为解决自动驾驶领域问题而开发的有趣的轨迹预测方法。该方法的作者结合了各种架构解决方案的最佳元素。
preview
神经网络变得轻松(第二十八部分):政策梯度算法

神经网络变得轻松(第二十八部分):政策梯度算法

我们继续研究强化学习方法。 在上一篇文章中,我们领略了深度 Q-学习方法。 按这种方法,已训练模型依据在特定情况下采取的行动来预测即将到来的奖励。 然后,根据政策和预期奖励执行动作。 但并不总是能够近似 Q-函数。 有时它的近似不会产生预期的结果。 在这种情况下,近似方法不应用于功用函数,而是应用于动作的直接政策(策略)。 其中一种方法是政策梯度。
preview
开发多币种 EA 交易系统(第 14 部分):风险管理器的适应性交易量变化

开发多币种 EA 交易系统(第 14 部分):风险管理器的适应性交易量变化

之前开发的风险管理器仅包含基本功能,让我们试着探讨其可能的开发方式,使我们能够在不干扰交易策略逻辑的情况下改善交易结果。
preview
神经网络变得简单(第 68 部分):离线优先引导政策优化

神经网络变得简单(第 68 部分):离线优先引导政策优化

自从第一篇专门讨论强化学习的文章以来,我们以某种方式触及了 2 个问题:探索环境和检定奖励函数。最近的文章曾专门讨论了离线学习中的探索问题。在本文中,我想向您介绍一种算法,其作者完全剔除了奖励函数。
preview
在MQL5中实现基于抛物线转向指标(Parabolic SAR)和简单移动平均线(SMA)的快速交易策略算法

在MQL5中实现基于抛物线转向指标(Parabolic SAR)和简单移动平均线(SMA)的快速交易策略算法

在本文中,我们将在MQL5中开发一个快速交易EA,利用抛物线SAR和简单移动平均线(SMA)指标来创建一个响应迅速的交易策略。我们详细介绍了该策略的实施过程,包括指标的使用、信号的生成以及测试和优化过程。
preview
在 MQL5 中自动化交易策略(第 13 部分):构建头肩形态交易算法

在 MQL5 中自动化交易策略(第 13 部分):构建头肩形态交易算法

在本文中,我们将自动化 MQL5 中的头肩形态。我们分析其架构,实现一个用于检测和交易该形态的 EA,并对结果进行回测。这个过程揭示了一个具有改进空间的实用交易算法。
preview
在 MQL5 中创建交互式图形用户界面(第 2 部分):添加控制和响应

在 MQL5 中创建交互式图形用户界面(第 2 部分):添加控制和响应

通过动态功能增强 MQL5 图形用户界面(GUI)面板,可以大大改善用户的交易体验。通过整合互动元素、悬停效果和实时数据更新,该面板成为现代交易者的强大工具。