MQL5 开发的自动交易示例的文章

icon

EA 是编程的 '巅峰',并且是每一个自动交易开发者的渴望目标。请阅读本部分中的文章,创建您自己的交易机器人。通过下面介绍的步骤,您将了解到如何创建,调试和测试自动交易系统。

这些文章不仅教导 MQL5 编程,而且也演示了如何实现交易思想和技巧。您将了解如何编写跟踪止损,如何运用资金管理,如何获取指标值,等等。

添加一个新的文章
最近 | 最佳
preview
神经网络变得轻松(第十八部分):关联规则

神经网络变得轻松(第十八部分):关联规则

作为本系列文章的延续,我们来研究无监督学习方法中的另一类问题:挖掘关联规则。 这种问题类型首先用于零售业,即超市等,来分析市场篮子。 在本文中,我们将讨论这些算法在交易中的适用性。
preview
神经网络变得轻松(第二十四部分):改进迁移学习工具

神经网络变得轻松(第二十四部分):改进迁移学习工具

在上一篇文章中,我们创建了一款用于创建和编辑神经网络架构的工具。 今天我们将继续打造这款工具。 我们将努力令其对用户更加友好。 也许可以看到,我们的主题往上更进一步。 但是,您不认为规划良好的工作空间在实现结果方面起着重要作用吗?
preview
在MQL5中创建交互式图形用户界面(第1部分):制作面板

在MQL5中创建交互式图形用户界面(第1部分):制作面板

本文探讨了使用MetaQuotes Language 5(MQL5)设计和实施图形用户界面(GUI)面板的基本步骤。自定义实用面板通过简化常见任务并可视化重要的交易信息,增强了交易中的用户交互。通过创建自定义面板,交易者可以优化其工作流程,并在交易操作中节省时间。
preview
多层感知器和反向传播算法(第 3 部分):与策略测试器集成 - 概述(I)

多层感知器和反向传播算法(第 3 部分):与策略测试器集成 - 概述(I)

多层感知器是简单感知器的演变,可以解决非线性可分离问题。 结合反向传播算法,可以有效地训练该神经网络。 在多层感知器和反向传播系列的第 3 部分当中,我们将见识到如何将此技术集成到策略测试器之中。 这种集成将允许使用复杂的数据分析,旨在制定更好的决策,从而优化您的交易策略。 在本文中,我们将讨论这种技术的优点和问题。
preview
神经网络变得轻松(第四十六部分):条件导向目标强化学习(GCRL)

神经网络变得轻松(第四十六部分):条件导向目标强化学习(GCRL)

在本文中,我们要看看另一种强化学习方式。 它被称为条件导向目标强化学习(GCRL)。 按这种方式,代理者经过训练,可以在特定场景中达成不同的目标。
preview
MQL5中的ALGLIB数值分析库

MQL5中的ALGLIB数值分析库

本文简要介绍了ALGLIB 3.19数值分析库、它的应用以及可以提高金融数据分析效率的新算法。
preview
神经网络变得轻松(第二十九部分):优势扮演者-评价者算法

神经网络变得轻松(第二十九部分):优势扮演者-评价者算法

在本系列的前几篇文章中,我们见识到两种增强的学习算法。 它们中的每一个都有自己的优点和缺点。 正如在这种情况下经常发生的那样,接下来的思路是将这两种方法合并到一个算法,使用两者间的最佳者。 这将弥补它们每种的短处。 本文将讨论其中一种方法。
preview
为EA交易提供指标的现成模板(第2部分):交易量和比尔威廉姆斯指标

为EA交易提供指标的现成模板(第2部分):交易量和比尔威廉姆斯指标

在本文中,我们将研究交易量和比尔威廉姆斯指标类别的标准指标。我们将创建现成的模板,用于EA中的指标使用——声明和设置参数、指标初始化和析构,以及从EA中的指示符缓冲区接收数据和信号。
DoEasy 函数库中的其他类(第七十一部分):图表对象集合事件
DoEasy 函数库中的其他类(第七十一部分):图表对象集合事件

DoEasy 函数库中的其他类(第七十一部分):图表对象集合事件

在本文中,我将创建一些跟踪图表对象事件的功能 — 添加/删除品种图表和图表子窗口,以及添加/删除/更改图表窗口中的指标。
preview
神经网络变得轻松(第四十部分):在大数据上运用 Go-Explore

神经网络变得轻松(第四十部分):在大数据上运用 Go-Explore

本文讨论 Go-Explore 算法覆盖长周期训练的运用,因为随着训练时间的增加,随机动作选择策略也许不会导致可盈利验算。
preview
神经网络变得轻松(第二十三部分):构建迁移学习工具

神经网络变得轻松(第二十三部分):构建迁移学习工具

在本系列文章中,我们已经不止一次提到了迁移学习。 然而,都只是提及而已。 在本文中,我建议填补这一空白,并仔细研究迁移学习。
preview
DoEasy 函数库中的时间序列(第五十七部分):指标缓冲区数据对象

DoEasy 函数库中的时间序列(第五十七部分):指标缓冲区数据对象

在本文中,开发一个对象,其中包含一个指标的一个缓冲区的所有数据。 这些对象对于存储指标缓冲区的数据序列将是必需的。 在其的辅助下,才有可能对任何指标的缓冲区数据,以及其他类似数据进行排序和比较。
preview
情绪分析与深度学习在交易策略中的应用以及使用Python进行回测

情绪分析与深度学习在交易策略中的应用以及使用Python进行回测

在本文中,我们将介绍如何使用Python中的情绪分析和ONNX模型,并将它们应用于EA中。使用一个脚本运行TensorFlow训练的ONNX模型,以进行深度学习预测;而通过另一个脚本获取新闻标题,并使用人工智能技术量化情绪。
preview
开发多币种 EA 交易(第 2 部分):过渡到交易策略的虚拟仓位

开发多币种 EA 交易(第 2 部分):过渡到交易策略的虚拟仓位

让我们继续开发多币种 EA,让多个策略并行工作。让我们尝试将与市场开仓相关的所有工作从策略级转移到管理策略的 EA 级。这些策略本身只进行虚拟交易,并不建立市场仓位。
preview
如何利用 MQL5 创建简单的多币种智能交易系统(第 2 部分):指标信号:多时间帧抛物线 SAR 指标

如何利用 MQL5 创建简单的多币种智能交易系统(第 2 部分):指标信号:多时间帧抛物线 SAR 指标

本文中的多币种智能交易系统是智能交易系统或交易机器人,它仅在一个品种图表上就能交易(开单、平单、和管理订单,例如:尾随停损和止盈)超过 1 个交易品种对。这次我们只用 1 个指标,即抛物线 SAR 或 iSAR, 将其应用在 PERIOD_M15 到 PERIOD_D1 的多个时间帧。
preview
构建K线趋势约束模型(第十部分):战略均线金叉与死叉(智能交易系统EA)

构建K线趋势约束模型(第十部分):战略均线金叉与死叉(智能交易系统EA)

您是否知道,基于移动平均线交叉的金叉和死叉策略,是识别长期市场趋势最为可靠的指标之一?当短期移动平均线上穿长期移动平均线时,金叉发出看涨趋势信号;而当短期移动平均线下穿长期移动平均线时,死叉则表明看跌趋势。尽管这些策略简单且有效,但手动运用时往往会导致错失机会或延迟交易。
preview
如何构建和优化基于波动率的交易系统(Chaikin volatility-CHV)

如何构建和优化基于波动率的交易系统(Chaikin volatility-CHV)

在本文中,我们将介绍另一个基于波动率的指标——蔡金波动率(Chaikin Volatility)。在了解到蔡金波动率的使用方法和构建方式之后,我们将学习如何构建自定义指标。我们将分享一些可用的简单策略,并对其进行测试,以了解哪个策略更优。
preview
如何利用 MQL5 创建简单的多币种智能交易系统(第 5 部分):凯尔特纳(Keltner)通道上的布林带 — 指标信号

如何利用 MQL5 创建简单的多币种智能交易系统(第 5 部分):凯尔特纳(Keltner)通道上的布林带 — 指标信号

本文中的多币种 EA 是一款智能交易系统或交易机器人,可以仅从一个品种图表中交易(开单、平单和管理订单,例如:尾随止损和止盈)多个品种(对)。在本文中,我们将用到来自两个指标的信号,在本例中为凯尔特纳(Keltner)通道上的布林带®。
preview
模式搜索的暴力方法(第六部分):循环优化

模式搜索的暴力方法(第六部分):循环优化

在这篇文章中,我将展示改进的第一部分,这些改进不仅使我能够使MetaTrader 4和5交易的整个自动化链闭环,而且还可以做一些更有趣的事情。从现在起,这个解决方案使我能够完全自动化创建EA和优化,并最大限度地降低寻找有效交易配置的劳动力成本。
preview
重塑经典策略(第二部分):布林带突破

重塑经典策略(第二部分):布林带突破

本文探讨了一种将线性判别分析(LDA)与布林带相结合的交易策略,利用对市场区域的分类预测来生成战略性入场信号。
preview
在类中包装 ONNX 模型

在类中包装 ONNX 模型

面向对象编程可以创建更紧凑、易于阅读和修改的代码。 在此,我们将会看到三个 ONNX 模型的示例。
preview
从头开始开发智能交易系统(第 11 部分):交叉订单系统

从头开始开发智能交易系统(第 11 部分):交叉订单系统

在本文中,我们将创建一个交叉订单系统。 有一种类型的资产让交易员的生涯变得非常困难 — 那就是期货合约。 但为什么令他们的职业生涯变得如此困难?
preview
神经网络实验(第 5 部分):常规化传输到神经网络的输入参数

神经网络实验(第 5 部分):常规化传输到神经网络的输入参数

神经网络是交易者工具包中的终极工具。 我们来检查一下这个假设是否成立。 在交易中运用神经网络,MetaTrader 5 是最接近自给自足的媒介。 为此提供了一个简单的解释。
preview
使用MQL5实现布林带交易策略:逐步指南

使用MQL5实现布林带交易策略:逐步指南

使用MQL5实现基于布林带交易策略的自动化交易算法的逐步指南。这是一个基于创建EA的详细教程,对交易者非常有帮助。
preview
理解编程范式(第 1 部分):开发价格行为智能系统的过程化方式

理解编程范式(第 1 部分):开发价格行为智能系统的过程化方式

了解编程范式及利用 MQL5 代码的应用。本文探讨了过程化编程的细节,并通过一个实际示例提供了实经验。您将学习如何利用 EMA 指标和烛条价格数据开发价格行为智能系统。额外,本文还介绍了函数化编程范式。
preview
神经网络实验(第 4 部分):模板

神经网络实验(第 4 部分):模板

在本文中,我将利用实验和非标准方法开发一个可盈利的交易系统,并验证神经网络是否对交易者有任何帮助。 若在交易中运用神经网络的话, MetaTrader 5 完全可作为一款自给自足的工具。 简单的解释。
preview
神经网络变得轻松(第四十二部分):模型拖延症、原因和解决方案

神经网络变得轻松(第四十二部分):模型拖延症、原因和解决方案

在强化学习的背景下,模型拖延症可能由多种原因引起。 本文研究了模型拖延症的一些可能原因,以及克服它们的方法。
preview
构建K线趋势约束模型(第九部分):多策略智能交易系统(EA)(三)

构建K线趋势约束模型(第九部分):多策略智能交易系统(EA)(三)

欢迎来到本趋势系列文章的第三部分!今天,我们将深入探讨如何利用背离(Divergence)策略,在既有的日线趋势中识别最优入场点。同时,我们将引入一种定制化的利润锁定机制——其功能类似于追踪止损(Trailing Stop-Loss),但经过独特的优化升级。此外,我们还将把趋势约束智能交易系统升级为更高级版本,新增一项交易执行条件以完善现有策略框架。随着内容推进,我们将持续探索MQL5在算法开发中的实际应用,为您提供更深入的见解与可落地的技术方案。
preview
在MQL5中创建动态多品种、多周期相对强弱指数(RSI)指标仪表盘

在MQL5中创建动态多品种、多周期相对强弱指数(RSI)指标仪表盘

本文中,我们将在MQL5中开发一个动态多品种、多周期相对强弱指数(RSI)指标仪表盘,为交易者提供跨不同品种和时间段的实时RSI值。该仪表盘具备交互式按钮、实时更新功能和有色编码的指标,以帮助交易者做出明智的决策。
preview
在您的 MQL 项目中使用 JSON 数据 API

在您的 MQL 项目中使用 JSON 数据 API

想象一下,您可以使用 MetaTrader 中没有的数据,您只能通过价格分析和技术分析从指标中获得数据。现在想象一下,您可以访问数据,这将使你的交易能力更高。如果您通过 API(应用程序编程接口)数据混合其他软件、宏观分析方法和超高级工具的输出,您就可以倍增 MetaTrader 软件的力量。在本文中,我们将教您如何使用 API,并介绍有用和有价值的 API 数据服务。
preview
在MetaTrader 5中实现基于EMA交叉的级联订单交易策略

在MetaTrader 5中实现基于EMA交叉的级联订单交易策略

本文介绍一个基于EMA交叉信号的自动交易算法,该算法适用于MetaTrader 5平台。文章详细阐述了在MQL5中开发一个EA所需的方方面面,以及在MetaTrader 5中进行测试的过程——从分析价格区间行为到风险管理。
preview
将ML模型与策略测试器集成(结论):实现价格预测的回归模型

将ML模型与策略测试器集成(结论):实现价格预测的回归模型

本文描述了一个基于决策树的回归模型的实现。该模型应预测金融资产的价格。我们已经准备好了数据,对模型进行了训练和评估,并对其进行了调整和优化。然而,需要注意的是,该模型仅用于研究目的,不应用于实际交易。
preview
让新闻交易变得容易(第一部分):创建一个数据库

让新闻交易变得容易(第一部分):创建一个数据库

新闻交易可能很复杂,令人难以招架,在本文中我们将介绍获取新闻数据的步骤。此外,我们还将了解MQL5经济数据日历及其提供的功能。
preview
使用 SMA 和 EMA 自动优化止盈和指标参数的示例

使用 SMA 和 EMA 自动优化止盈和指标参数的示例

本文介绍了一种用于外汇交易的复杂 EA 交易,它能够将机器学习与技术分析相结合。它专注于交易苹果股票,具有自适应优化、风险管理和多策略的特点。回溯测试显示出良好的结果,盈利能力较高,但也有显著的回撤,表明还有进一步改进的潜力。
preview
如何开发各种类型的追踪止损并将其加入到EA中

如何开发各种类型的追踪止损并将其加入到EA中

在本文中,我们将探讨用于便捷创建各种追踪止损的类,并学习如何将追踪止损加入到EA中。
preview
DoEasy 函数库中的时间序列(第五十六部分):自定义指标对象,从集合中的指标对象获取数据

DoEasy 函数库中的时间序列(第五十六部分):自定义指标对象,从集合中的指标对象获取数据

本文研究在 EA 中创建自定义指标对象。 我们稍微改进一下库类,并添加一些方法,以便从 EA 中的指标对象获取数据。
preview
如何在MQL5的EA中实现自优化

如何在MQL5的EA中实现自优化

MQL5中EA自优化的分步指南。我们将涵盖稳健的优化逻辑、参数选择的最佳实践,以及如何通过回测重构策略。此外,还将讨论诸如分步优化等高级方法,以增强您的交易方法。
preview
重构经典策略(第十部分):人工智能(AI)能否为MACD提供动力?

重构经典策略(第十部分):人工智能(AI)能否为MACD提供动力?

加入我们的行列,我们将实证分析MACD指标,以测试将AI应用于包含该指标的策略是否会在预测欧元兑美元(EURUSD)方面提高准确性。我们同时评估该指标本身是否比价格更容易预测,以及该指标的值是否能预测未来的价格水平。我们将为您提供所需的信息,以决定是否应该考虑将MACD整合到您的AI交易策略中。
preview
MQL5 简介(第 4 部分):掌握结构、类和时间函数

MQL5 简介(第 4 部分):掌握结构、类和时间函数

在我们的最新文章中揭开 MQL5 编程的秘密!深入了解结构、类和时间函数的基本要素,为您的编码之旅赋能。无论您是初学者还是经验丰富的开发人员,我们的指南都简化了复杂的概念,为掌握 MQL5 提供了宝贵的见解。提升你的编程技能,在算法交易领域保持领先!
preview
练习开发交易策略

练习开发交易策略

在本文中,我们将尝试开发自己的交易策略。任何交易策略都必须以某种统计优势为基础。而且,这种优势应该长期存在。