
改编版 MQL5 网格对冲 EA(第 1 部分):制作一个简单的对冲 EA
我们将创建一个简单的对冲 EA,作为我们更高级的 Grid-Hedge EA 的基础,它将是经典网格和经典对冲策略的混合体。在本文结束时,您将知晓如何创建一个简单的对冲策略,并且您还将知晓人们对于该策略是否能真正 100% 盈利的说法。

神经网络实验(第 5 部分):常规化传输到神经网络的输入参数
神经网络是交易者工具包中的终极工具。 我们来检查一下这个假设是否成立。 在交易中运用神经网络,MetaTrader 5 是最接近自给自足的媒介。 为此提供了一个简单的解释。

从头开始开发智能交易系统(第 11 部分):交叉订单系统
在本文中,我们将创建一个交叉订单系统。 有一种类型的资产让交易员的生涯变得非常困难 — 那就是期货合约。 但为什么令他们的职业生涯变得如此困难?

神经网络实验(第 4 部分):模板
在本文中,我将利用实验和非标准方法开发一个可盈利的交易系统,并验证神经网络是否对交易者有任何帮助。 若在交易中运用神经网络的话, MetaTrader 5 完全可作为一款自给自足的工具。 简单的解释。

理解编程范式(第 1 部分):开发价格行为智能系统的过程化方式
了解编程范式及利用 MQL5 代码的应用。本文探讨了过程化编程的细节,并通过一个实际示例提供了实经验。您将学习如何利用 EMA 指标和烛条价格数据开发价格行为智能系统。额外,本文还介绍了函数化编程范式。

如何利用 MQL5 创建简单的多币种智能交易系统(第 2 部分):指标信号:多时间帧抛物线 SAR 指标
本文中的多币种智能交易系统是智能交易系统或交易机器人,它仅在一个品种图表上就能交易(开单、平单、和管理订单,例如:尾随停损和止盈)超过 1 个交易品种对。这次我们只用 1 个指标,即抛物线 SAR 或 iSAR, 将其应用在 PERIOD_M15 到 PERIOD_D1 的多个时间帧。

为EA交易提供指标的现成模板(第2部分):交易量和比尔威廉姆斯指标
在本文中,我们将研究交易量和比尔威廉姆斯指标类别的标准指标。我们将创建现成的模板,用于EA中的指标使用——声明和设置参数、指标初始化和析构,以及从EA中的指示符缓冲区接收数据和信号。

使用 Python 和 MetaTrader5 python 软件包及 ONNX 模型文件进行深度学习预测和排序
本项目涉及在金融市场中使用 Python 进行基于深度学习的预测。我们将探索使用平均绝对误差(MAE)、均方误差(MSE)和R平方(R2)等关键指标测试模型性能的复杂性,并学习如何将所有内容打包到可执行文件中。我们还将制作一个 ONNX 模型文件以及它的 EA。

DoEasy 函数库中的时间序列(第五十六部分):自定义指标对象,从集合中的指标对象获取数据
本文研究在 EA 中创建自定义指标对象。 我们稍微改进一下库类,并添加一些方法,以便从 EA 中的指标对象获取数据。

模式搜索的暴力方法(第六部分):循环优化
在这篇文章中,我将展示改进的第一部分,这些改进不仅使我能够使MetaTrader 4和5交易的整个自动化链闭环,而且还可以做一些更有趣的事情。从现在起,这个解决方案使我能够完全自动化创建EA和优化,并最大限度地降低寻找有效交易配置的劳动力成本。

开发多币种 EA 交易(第 2 部分):过渡到交易策略的虚拟仓位
让我们继续开发多币种 EA,让多个策略并行工作。让我们尝试将与市场开仓相关的所有工作从策略级转移到管理策略的 EA 级。这些策略本身只进行虚拟交易,并不建立市场仓位。

将ML模型与策略测试器集成(结论):实现价格预测的回归模型
本文描述了一个基于决策树的回归模型的实现。该模型应预测金融资产的价格。我们已经准备好了数据,对模型进行了训练和评估,并对其进行了调整和优化。然而,需要注意的是,该模型仅用于研究目的,不应用于实际交易。

神经网络变得轻松(第三十七部分):分散关注度
在上一篇文章中,我们讨论了在其架构中使用关注度机制的关系模型。 这些模型的具体特征之一是计算资源的密集功用。 在本文中,我们将研究于自我关注度模块内减少计算操作数量的机制之一。 这将提高模型的常规性能。

神经网络变得轻松(第五十四部分):利用随机编码器(RE3)进行高效研究
无论何时我们研究强化学习方法时,我们都会面对有效探索环境的问题。解决这个问题通常会导致算法更复杂性,以及训练额外模型。在本文中,我们将看看解决此问题的替代方法。

情绪分析与深度学习在交易策略中的应用以及使用Python进行回测
在本文中,我们将介绍如何使用Python中的情绪分析和ONNX模型,并将它们应用于EA中。使用一个脚本运行TensorFlow训练的ONNX模型,以进行深度学习预测;而通过另一个脚本获取新闻标题,并使用人工智能技术量化情绪。

MQL5 中的范畴论 (第 6 部分):单态回拉和满态外推
范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。

如何利用 MQL5 创建简单的多币种智能交易系统(第 5 部分):凯尔特纳(Keltner)通道上的布林带 — 指标信号
本文中的多币种 EA 是一款智能交易系统或交易机器人,可以仅从一个品种图表中交易(开单、平单和管理订单,例如:尾随止损和止盈)多个品种(对)。在本文中,我们将用到来自两个指标的信号,在本例中为凯尔特纳(Keltner)通道上的布林带®。

神经网络变得简单(第 66 部分):离线学习中的探索问题
使用准备好的训练数据集中的数据对模型进行离线训练,这种方法虽然有一定的优势,但其不利的一面是,环境信息被大大压缩到训练数据集的大小。这反过来又限制了探索的可能性。在本文中,我们将探讨一种方法,这种方法可以用尽可能多样化的数据来填充训练数据集。

MQL5 简介(第 8 部分):初学者构建 EA 交易系统指南(二)
本文解决了MQL5论坛中常见的初学者问题,并演示了实用的解决方案。学习执行基本任务,如买卖、获取烛形价格以及管理自动交易方面,如交易限额、交易期限和盈亏阈值。获取分步指导,以增强您对 MQL5 中这些概念的理解和实现。

神经网络变得简单(第 62 部分):在层次化模型中运用决策转换器
在最近的文章中,我们已看到了运用决策转换器方法的若干选项。该方法不仅可以分析当前状态,还可以分析先前状态的轨迹,以及在其中执行的动作。在本文中,我们将专注于在层次化模型中运用该方法。

神经网络变得轻松(第五十二部分):研究乐观情绪和分布校正
由于模型是基于经验复现缓冲区进行训练,故当前的扮演者政策会越来越远离存储的样本,这会降低整个模型的训练效率。在本文中,我们将查看一些能在强化学习算法中提升样本使用效率的算法。

如何构建和优化基于波动率的交易系统(Chaikin volatility-CHV)
在本文中,我们将介绍另一个基于波动率的指标——蔡金波动率(Chaikin Volatility)。在了解到蔡金波动率的使用方法和构建方式之后,我们将学习如何构建自定义指标。我们将分享一些可用的简单策略,并对其进行测试,以了解哪个策略更优。

神经网络变得简单(第 64 部分):保守加权行为克隆(CWBC)方法
据前几篇文章中所执行测试的结果,我们得出的结论是,训练策略的最优性很大程度上取决于所采用的训练集。在本文中,我们将熟悉一种相当简单,但有效的方法来选择轨迹,并据其训练模型。

神经网络变得轻松(第二十八部分):政策梯度算法
我们继续研究强化学习方法。 在上一篇文章中,我们领略了深度 Q-学习方法。 按这种方法,已训练模型依据在特定情况下采取的行动来预测即将到来的奖励。 然后,根据政策和预期奖励执行动作。 但并不总是能够近似 Q-函数。 有时它的近似不会产生预期的结果。 在这种情况下,近似方法不应用于功用函数,而是应用于动作的直接政策(策略)。 其中一种方法是政策梯度。

神经网络变得简单(第 61 部分):离线强化学习中的乐观情绪问题
在离线学习期间,我们基于训练样本数据优化了智能体的政策。成品政策令智能体对其动作充满信心。然而,这种乐观情绪并不总是正当的,并且可能会在模型操作期间导致风险增加。今天,我们要寻找降低这些风险的方法之一。

神经网络变得简单(第 68 部分):离线优先引导政策优化
自从第一篇专门讨论强化学习的文章以来,我们以某种方式触及了 2 个问题:探索环境和检定奖励函数。最近的文章曾专门讨论了离线学习中的探索问题。在本文中,我想向您介绍一种算法,其作者完全剔除了奖励函数。