MQL5 开发的自动交易示例的文章

icon

EA 是编程的 '巅峰',并且是每一个自动交易开发者的渴望目标。请阅读本部分中的文章,创建您自己的交易机器人。通过下面介绍的步骤,您将了解到如何创建,调试和测试自动交易系统。

这些文章不仅教导 MQL5 编程,而且也演示了如何实现交易思想和技巧。您将了解如何编写跟踪止损,如何运用资金管理,如何获取指标值,等等。

添加一个新的文章
最近 | 最佳
preview
交易中的神经网络:统一轨迹生成模型(UniTraj)

交易中的神经网络:统一轨迹生成模型(UniTraj)

理解个体在众多不同领域的行为很重要,但大多数方法只专注其中一项任务(理解、噪声消除、或预测),这会降低它们在现实中的有效性。在本文中,我们将领略一个可以适配解决各种问题的模型。
preview
神经网络变得简单(第 59 部分):控制二分法(DoC)

神经网络变得简单(第 59 部分):控制二分法(DoC)

在上一篇文章中,我们领略了决策变换器。但是,外汇市场复杂的随机环境不允许我们充分发挥所提议方法的潜能。在本文中,我将讲述一种算法,旨在提高在随机环境中的性能。
preview
价格行为分析工具包开发(第七部分):信号脉冲智能交易系统(EA)

价格行为分析工具包开发(第七部分):信号脉冲智能交易系统(EA)

借助“信号脉冲(Signal Pulse)”这款MQL5智能交易系统(EA),释放多时间框架分析的潜力。该EA整合了布林带(Bollinger Bands)和随机震荡器(Stochastic Oscillator),以提供准确、高概率的交易信号。了解如何实施这一策略,并使用自定义箭头有效直观地显示买入和卖出机会。非常适合希望借助多时间框架的自动化分析来提升自身判断能力的交易者。
preview
MQL5交易策略自动化(第十二部分):实现缓解型订单块(MOB)策略

MQL5交易策略自动化(第十二部分):实现缓解型订单块(MOB)策略

在本文中,我们将构建一个MQL5交易系统,可针对“聪明资金”(Smart Money)交易自动检测订单块。我们将阐述该策略的规则,在MQL5中实现其逻辑,并融入风险管理以实现有效的交易执行。最后,我们将对该系统进行回测,以评估其表现,并对其进行优化以获得最优结果。
preview
神经网络变得简单(第 76 部分):配合多未来变换器探索不同的交互形态

神经网络变得简单(第 76 部分):配合多未来变换器探索不同的交互形态

本文继续探讨预测即将到来的价格走势的主题。我邀请您领略多未来变换器架构。其主要思路是把未来的多模态分布分解为若干个单模态分布,这样就可以有效地模拟场景中个体之间互动的各种模态。
preview
掌握 MQL5:从入门到精通(第六部分):开发 EA 交易的基础知识

掌握 MQL5:从入门到精通(第六部分):开发 EA 交易的基础知识

本文继续针对初学者的系列文章。在这里我们将讨论开发 EA 交易的基本原则。我们将创建两个 EA:第一个 EA 不使用指标进行交易,使用挂单,第二个 EA 将基于标准 MA 指标,以当前价格开仓。在这里,我假设你不再是一个完全的初学者,并且对前几篇文章中的材料有相对较好的掌握。
preview
交易中的神经网络:用于时间序列预测的轻量级模型

交易中的神经网络:用于时间序列预测的轻量级模型

轻量级时间序列预测模型使用最少的参数数量实现高性能。这反过来减少了计算资源的消耗并加快了决策速度。尽管是轻量级的,这些模型实现了与更复杂模型相当的预测质量。
preview
交易中的神经网络:将全局信息注入独立通道(InjectTST)

交易中的神经网络:将全局信息注入独立通道(InjectTST)

大多数现代多模态时间序列预测方法都采用了独立通道方式。这忽略了同一时间序列不同通道的天然依赖性。巧妙地运用两种方式(独立通道和混合通道),是提高模型性能的关键。
preview
创建 MQL5-Telegram 集成 EA 交易 (第一部分):从 MQL5 发送消息到 Telegram

创建 MQL5-Telegram 集成 EA 交易 (第一部分):从 MQL5 发送消息到 Telegram

在本文中,我们在 MQL5 中创建一个 EA 交易,以使用机器人向 Telegram 发送消息。我们设置必要的参数,包括机器人的 API 令牌和聊天 ID,然后通过执行 HTTP POST 请求来传递消息。之后,我们将处理响应以确保成功传达,并排除故障时出现的任何问题。这确保我们能够通过创建的机器人将消息从 MQL5 发送到 Telegram。
preview
神经网络变得简单(第 56 部分):利用核范数推动研究

神经网络变得简单(第 56 部分):利用核范数推动研究

强化学习中的环境研究是一个紧迫的问题。我们之前已视察过一些方式。在本文中,我们将讲述另一种基于最大化核范数的方法。它允许智能体识别拥有高度新颖性和多样性的环境状态。
preview
MQL5自动化交易策略(第十四部分):基于MACD-RSI统计方法的交易分层策略

MQL5自动化交易策略(第十四部分):基于MACD-RSI统计方法的交易分层策略

本文将介绍一种结合MACD和RSI指标与统计方法的交易分层策略,通过MQL5实现动态自动化交易。我们将探讨这种级联式策略的架构设计,通过关键代码段详解其实现方式,并指导读者如何进行回测以优化策略表现。最后,我们将总结该策略的潜力,并为自动化交易的进一步优化奠定基础。
preview
交易中的神经网络:使用语言模型进行时间序列预测

交易中的神经网络:使用语言模型进行时间序列预测

我们继续研究时间序列预测模型。在本文中,我们领略一种建立在预训练语言模型基础上的复杂算法。
preview
MQL5 交易管理面板开发指南(第六部分):交易管理面板(续篇)

MQL5 交易管理面板开发指南(第六部分):交易管理面板(续篇)

在本文中,我们对多功能管理面板的“交易面板”进行升级。我们引入一个强大的辅助函数,大幅简化代码,提高可读性、可维护性与运行效率。同时演示如何无缝集成更多按钮,并优化界面,以支持更广泛的交易任务。无论是持仓管理、订单调整,还是简化交互,本文将助您打造稳健且易用的交易管理面板。
preview
价格行为分析工具包开发(第五部分):波动率导航智能交易系统(Volatility Navigator EA)

价格行为分析工具包开发(第五部分):波动率导航智能交易系统(Volatility Navigator EA)

判断市场方向或许相对简单,但把握入场时机却颇具挑战。作为“价格行为分析工具包开发”系列文章的一部分,我很高兴再为大家介绍一款能够提供入场点、止盈水平和止损设置位置的工具。为实现这一目标,我们采用了MQL5编程语言。让我们在本文中深入探讨每一步。
preview
在MQL5中创建交易管理员面板(第四部分):登录安全层

在MQL5中创建交易管理员面板(第四部分):登录安全层

想象一下,一个恶意入侵者潜入了交易管理员房间,获取了用于向全球数百万交易者传递有价值信息的计算机和管理员面板的访问权限。这种入侵可能导致灾难性后果,例如未经授权发送误导性信息或随意点击按钮触发意外操作。在本次讨论中,我们将探究MQL5中的安全措施以及在管理员面板中实施的新安全功能,以防范这些威胁。通过增强安全协议,我们旨在保护通信渠道并维护全球交易社区的可信度。在本文的讨论中了解更多见解。
preview
神经网络变得简单(第 85 部分):多变元时间序列预测

神经网络变得简单(第 85 部分):多变元时间序列预测

在本文中,我愿向您介绍一种新的复杂时间序列预测方法,它和谐地结合了线性模型和转换器的优点。
preview
神经网络变得轻松(第五十一部分):行为-指引的扮演者-评论者(BAC)

神经网络变得轻松(第五十一部分):行为-指引的扮演者-评论者(BAC)

最后两篇文章研究了软性扮演者-评论者算法,该算法将熵正则化整合到奖励函数当中。这种方式在环境探索和模型开发之间取得平衡,但它仅适用于随机模型。本文提出了一种替代方式,能适用于随机模型和确定性模型两者。
preview
在MQL5中创建交易管理员面板(第三部分):扩展内置类以进行主题管理(II)

在MQL5中创建交易管理员面板(第三部分):扩展内置类以进行主题管理(II)

在本文的讨论中,我们将逐步扩展现有的对话框库,以纳入主题管理逻辑。此外,我们将把主题切换方法整合到管理员面板项目中使用的 CDialog、CEdit 和 CButton 类中。继续阅读,获取更多深入的了解。
preview
在 MQL5 中构建自优化智能交易系统(第六部分):防止爆仓

在 MQL5 中构建自优化智能交易系统(第六部分):防止爆仓

在今天的讨论中,我们将一同寻找一种算法程序,以最大限度地减少我们因盈利交易被止损而平仓的总次数。我们面临的问题极具挑战性,社区讨论中给出的大多数解决方案都缺乏既定且固定的规则。我们解决问题的算法方法提高了我们交易的盈利能力,并降低了我们的平均每笔交易亏损。然而,要完全过滤掉所有将被止损的交易,还需要进一步的改进,但我们的解决方案对任何人来说都是一个很好的初步尝试
preview
创建 MQL5-Telegram 集成 EA 交易 (第 3 部分):将带有标题的图表截图从 MQL5 发送到 Telegram

创建 MQL5-Telegram 集成 EA 交易 (第 3 部分):将带有标题的图表截图从 MQL5 发送到 Telegram

在本文中,我们创建一个 MQL5 EA 交易,将图表截图编码为图像数据并通过 HTTP 请求将其发送到 Telegram 聊天。通过集成图片编码和传输,我们直接在 Telegram 内通过可视化交易洞察增强了现有的 MQL5-Telegram 系统。
preview
数据科学与机器学习(第22部分):利用自编码器神经网络实现更智能的交易——从噪声中提炼信号

数据科学与机器学习(第22部分):利用自编码器神经网络实现更智能的交易——从噪声中提炼信号

在瞬息万变的金融市场中,从噪音中分离出有意义的信号对于成功交易至关重要。通过采用复杂的神经网络架构,利用自动编码器发掘市场数据中的隐藏模式,将嘈杂的输入转化为可操作的类型。本文探讨了自动编码器如何改变交易实践,为交易者提供了一个强大的工具,以改善决策制定,并在当今瞬息万变的市场中获得竞争优势。
preview
您应当知道的 MQL5 向导技术(第 16 部分):配合本征向量进行主成分分析

您应当知道的 MQL5 向导技术(第 16 部分):配合本征向量进行主成分分析

本文所见的主成分分析,是数据分析中的一种降维技术,文中还有如何配合本征值和向量来实现它。一如既往,我们瞄向的是开发一个可在 MQL5 向导中使用的原型专业信号类。
preview
重塑经典策略(第三部分):预测新高与新低

重塑经典策略(第三部分):预测新高与新低

在系列文章的第三部分中,我们将通过实证分析经典交易策略,探讨如何利用人工智能进行优化。本次研究聚焦于运用线性判别分析模型(LDA)预测价格走势中的更高高点与更低低点。
preview
神经网络变得简单(第 73 部分):价格走势预测 AutoBot

神经网络变得简单(第 73 部分):价格走势预测 AutoBot

我们将继续讨论训练轨迹预测模型的算法。在本文中,我们将领略一种称为 “AutoBots” 的方法。
preview
MQL5 中的范畴论 (第 12 部分):秩序(Orders)

MQL5 中的范畴论 (第 12 部分):秩序(Orders)

本文是范畴论系列文章之以 MQL5 实现图论的部分,深入研讨秩序(Orders)。我们通过研究两种主要的秩序类型,实测秩序论的概念如何支持幺半群集合,从而为交易决策提供信息。
preview
让新闻交易轻松上手(第六部分):执行交易(3)

让新闻交易轻松上手(第六部分):执行交易(3)

在本文中,将实现基于新闻事件ID对单个新闻事件进行新闻筛选。此外,还将对先前的SQL查询进行改进,以提供更多信息或减少查询运行时间。另外,还将使前几篇文章中构建的代码具备实际功能。
preview
MetaTrader 中的 Multibot(第二部分):改进的动态模板

MetaTrader 中的 Multibot(第二部分):改进的动态模板

在开发上一篇文章的主题时,我决定创建一个更灵活、功能更强大的模板,该模板具有更大的功能,可以有效地用于自由职业,也可以作为开发多货币和多时段 EA 的基础,并能够与外部解决方案集成。
preview
结合基本面和技术分析策略在MQL5中的实现(适合初学者)

结合基本面和技术分析策略在MQL5中的实现(适合初学者)

在本文中,我们将讨论如何将趋势跟踪和基本面原则无缝整合到一个EA中,以构建一个更加稳健的交易策略。本文将展示任何人都可以轻松上手,使用MQL5构建定制化交易算法的过程。
preview
创建 MQL5-Telegram 集成 EA 交易(第 6 部分):添加响应式内联按钮

创建 MQL5-Telegram 集成 EA 交易(第 6 部分):添加响应式内联按钮

在本文中,我们将交互式内联按钮集成到 MQL5 EA 交易中,允许通过 Telegram 进行实时控制。每次按下按钮都会触发特定的操作,并将响应发送回用户。我们还模块化了函数,以便有效地处理 Telegram 消息和回调查询。
preview
交易中的神经网络:时空神经网络(STNN)

交易中的神经网络:时空神经网络(STNN)

在本文中,我们将谈及使用时空变换来有效预测即将到来的价格走势。为了提高 STNN 中的数值预测准确性,提出了一种连续注意力机制,令模型能够更好地参考数据的重要方面。
preview
MQL5 交易工具包(第 3 部分):开发挂单管理 EX5 库

MQL5 交易工具包(第 3 部分):开发挂单管理 EX5 库

了解如何在 MQL5 代码或项目中开发和实现全面的挂单 EX5库。本文将向您展示如何创建一个全面的挂单管理 EX5 库,并通过构建交易面板或图形用户界面(GUI)来指导您导入和实现它。EA 交易订单面板将允许用户直接从图表窗口上的图形界面打开、监控和删除与指定幻数相关的挂单。
preview
使用MQL5经济日历进行交易(第一部分):精通MQL5经济日历的功能

使用MQL5经济日历进行交易(第一部分):精通MQL5经济日历的功能

在本文中,我们首先要了解其核心功能,探讨如何使用MQL5经济日历进行交易。然后,我们在MQL5中实现经济日历的关键功能,以提取与交易决策相关的新闻数据。最后,我们进行总结,展示如何利用这些信息来有效增强交易策略。
preview
交易中的神经网络:TEMPO 方法的实施结果

交易中的神经网络:TEMPO 方法的实施结果

我们继续领略 TEMPO 方法。在本文中,我们将评估所提议方法在真实历史数据上的真实有效性。
preview
为智能系统制定品质因数

为智能系统制定品质因数

在本文中,我们将见识到如何制定一个品质得分,并由您的智能系统从策略测试器返回。 我们将查看两种著名的计算方法 — Van Tharp 和 Sunny Harris。
preview
神经网络变得简单(第 78 部分):带有变换器的无解码对象检测器(DFFT)

神经网络变得简单(第 78 部分):带有变换器的无解码对象检测器(DFFT)

在本文中,我提议从不同的角度看待构建交易策略的问题。我们不会预测未来的价格走势,但会尝试基于历史数据分析构建交易系统。
preview
交易中的多项式模型

交易中的多项式模型

本文将介绍正交多项式。正交多项式的应用,可以成为更准确、更有效地分析市场信息的基础,从而帮助交易者做出更明智的决策。
preview
神经网络变得轻松(第五十五部分):对比内在控制(CIC)

神经网络变得轻松(第五十五部分):对比内在控制(CIC)

对比训练是一种无监督训练方法表象。它的目标是训练一个模型,突显数据集中的相似性和差异性。在本文中,我们将谈论使用对比训练方式来探索不同的扮演者技能。
preview
在MQL5中自动化交易策略(第5部分):开发自适应交叉RSI交易套件策略

在MQL5中自动化交易策略(第5部分):开发自适应交叉RSI交易套件策略

在本文中,我们开发了自适应交叉RSI交易套件系统。该系统使用周期为14和50的移动平均线交叉来产生信号,并由一个周期为14的RSI过滤器进行确认。该系统包含一个交易日过滤器、带注释的信号箭头,以及一个用于监控的实时仪表盘。 这种方法确保了自动化交易中的精确性和适应性。
preview
创建一个基于日波动区间突破策略的 MQL5 EA

创建一个基于日波动区间突破策略的 MQL5 EA

在本文中,我们将创建一个基于日波动区间突破策略的 MQL5 EA。我们阐述该策略的关键概念,设计EA框架蓝图,并在 MQL5 语言中实现突破策略逻辑。最后,我们将探讨用于回测和优化EA的技术,以最大限度地提高其有效性。
preview
MQL5 简介(第 11 部分):MQL5 中使用内置指标的初学者指南(二)

MQL5 简介(第 11 部分):MQL5 中使用内置指标的初学者指南(二)

了解如何使用 RSI、MA 和随机震荡指标等多种指标在 MQL5 中开发 EA 交易来检测隐藏的看涨和看跌背离。学习实施有效的风险管理并通过详细的示例和完整注释的源代码实现交易自动化,以达到教育目的!