Непрерывная скользящая оптимизация (Часть 5): Обзор проекта автооптимизатора, а также создание графического интерфейса
Продолжаем описание скользящей оптимизации в терминале MetaTrader 5. Рассмотрев в прошлых статьях методы формирования отчета оптимизации и способ его фильтрации, мы перешли к описанию внутренней структуры приложения, отвечающего за сам процесс оптимизации. Автооптимизатор, выполненный как приложение на C#, имеет собственный графический интерфейс. Именно созданию данного графического интерфейса и посвящена текущая статья.
Как правильно выбирать советник в Маркете?
В данной статье рассмотрим моменты, на которые следует обращать внимание при покупке советника в первую очередь. А также поищем способы повышения прибыли и, что самое, главное, как потратить деньги с умом и еще заработать на этом. Кроме того, после прочтения вы поймете, что заработать можно даже на простых и бесплатных продуктах.
Управление оптимизацией (Часть 2): Создание ключевых объектов и логики приложения
Данная статья является продолжением предыдущей публикации на тему создания графического интерфейса для управления оптимизациями. В ней будет рассмотрена логика работы создаваемого дополнения. Создадим обертку для терминала MetaTrader 5 для его запуска как управляемый процесс через C#. А также будет рассмотрена работа с конфигурационными файлами и файлами настроек. Логика программы же будет поделена на две части: в первой описаны методы, вызываемые после нажатия на ту или иную клавишу, а вторая часть — запуск и управление оптимизациями.
Визуальная оценка результатов оптимизации
Разговор в этой статье пойдёт о том, как построить графики всех проходов оптимизации и подобрать оптимальный пользовательский критерий. А также о том, как, имея минимальные знания в MQL5 и большое желание, используя статьи сайта и комментарии на форуме, написать то, что хочется.
Брутфорс-подход к поиску закономерностей (Часть IV): Минимальная функциональность
В данной статье я покажу улучшенную версию брутфорса, основанную на целях поставленных в предыдущей статье, и постараюсь наиболее широко осветить эту тему, используя советники и настройки добытые с помощью данного метода. Также дам сообществу попробовать новую версию программы.
Популяционные алгоритмы оптимизации: Рой частиц (PSO)
В данной статье рассмотрим популярный алгоритм "Рой Частиц" (PSO — particle swarm optimisation). Ранее мы обсудили такие важные характеристики алгоритмов оптимизации как сходимость, скорость сходимости, устойчивость, масштабируемость, разработали стенд для тестирования, рассмотрели простейший алгоритм на ГСЧ.
Непрерывная скользящая оптимизация (Часть 3): Способ адаптации робота к автооптимизатору
Третья статья служит неким мостом между двумя предыдущими, в ней освещается механизм взаимодействия с DLL, написанной в первой статье, и объектами для выгрузки из второй статьи. Показывается процесс создания обертки для класса, который импортируется из DLL и формирует XML-файл с историей торгов, а также способ взаимодействии с данной оберткой.
Непрерывная скользящая оптимизация (Часть 7): Стыковка логической части автооптимизатора с графикой и управление графикой из программы
Данная статья является предпоследней и описывает стыковку графической части программы автооптимизатора с его логической частью. В ней рассматривается процесс запуска и оптимизации, начиная от нажатия кнопки до переадресации менеджеру оптимизаций.
Параллельная оптимизация методом роя частиц (Particle Swarm Optimization)
В статье описан способ быстрой оптимизиции методом роя частиц, представлена его реализация на MQL, готовая к применению как в однопоточном режиме внутри эксперта, так и в параллельном многопоточном режиме в качестве надстройки, выполняющейся на локальных агентах тестера.
Непрерывная скользящая оптимизация (Часть 2): Механизм создания отчета оптимизации для любого робота
Если прошлая статья повествовала о создании DLL-библиотеки, которая будет использоваться в нашем автооптимизаторе и в роботе, то продолжение будет целиком посвящено языку MQL5.
Возможности Мастера MQL5, которые вам нужно знать (Часть 5): Цепи Маркова
Цепи Маркова — это мощный математический инструмент, который можно использовать для моделирования и прогнозирования данных временных рядов в различных областях, включая финансы. При моделировании и прогнозировании финансовых временных рядов цепи Маркова часто используются для моделирования эволюции финансовых активов с течением времени, таких как цены акций или обменные курсы. Одними из основных преимуществ моделей цепей Маркова являются их простота и удобство использования.
Брутфорс-подход к поиску закономерностей (Часть III): Новые горизонты
Данная статья продолжает тему брутфорса, привнося в алгоритм моей программы новые возможности по анализу рынка, тем самым ускоряя скорость анализа и качество итоговых результатов, что обеспечивает максимально качественный взгляд на глобальные закономерности в рамках данного подхода.
Непрерывная скользящая оптимизация (Часть 8): Доработка программы и исправление найденных недочетов
По просьбам пользователей и читателей данного цикла статей, программа была модифицирована и теперь можно сказать, что в текущая статья содержит уже новую версию автооптимизатора. В автооптимизатор были внесены как запрашиваемые, так и новые улучшения, идеи которых пришли в момент корректировки программы.
Популяционные алгоритмы оптимизации
Вводная статья об алгоритмах оптимизации (АО). Классификация. В статье предпринята попытка создать тестовый стенд (набор функций), который послужит в дальнейшем для сравнения АО между собой, и, даже, возможно, выявления самого универсального алгоритма из всех широко известных.
Популяционные алгоритмы оптимизации: Муравьиная Колония (Ant Colony Optimization - ACO)
В этот раз разберём алгоритм оптимизации Муравьиная Колония. Алгоритм очень интересный и неоднозначный. Попытка создания нового типа ACO.
Популяционные алгоритмы оптимизации: Искуственная Пчелиная Колония (Artificial Bee Colony - ABC)
Сегодня изучим алгоритм искусственной пчелиной колонии. Дополним наши знания новыми принципами исследования функциональных пространств. В данной статье я расскажу о моей интерпретации классического варианта алгоритма.
Работаем со временем (Часть 2): Функции
Научимся автоматически распознавать смещения времени у брокера и время по Гринвичу. Вместо того, чтобы обращаться к брокеру, который скорее всего даст недостаточно полный ответ (а кто захочет объяснять, куда пропал торговый час?), мы сами посмотрим, по какому времени приходят от них котировки в те недели, когда переводят часы. Но конечно же, это мы будем делать не вручную — пусть за нас работает программа.
Эксперименты с нейросетями (Часть 1): Вспоминая геометрию
Нейросети наше все. Проверяем на практике, так ли это. Экспериментируем и используем нестандартные подходы. Пишем прибыльную торговую систему. Простое объяснение.
Популяционные алгоритмы оптимизации: Алгоритм обезьян (Monkey algorithm, MA)
В этой статье рассмотрим алгоритм оптимизации "Алгоритм обезьян" (MA). Способность этих подвижных животных преодолевать сложные препятствия и добираться до самых труднодоступных вершин деревьев легли в основу идеи алгоритма MA.
Популяционные алгоритмы оптимизации: Алгоритм оптимизации с кукушкой (Cuckoo Optimization Algorithm — COA)
Следующий алгоритм, который рассмотрим — оптимизация поиском кукушки с использованием полётов Леви. Это один из новейших алгоритмов оптимизации и новый лидер в рейтинговой таблице.
Введение в MQL5 (Часть 1): Руководство по алготрейдингу для начинающих
Данная статья представляет собой руководство по программированию на MQL5 для начинающих. Она открывает дверь в увлекательный мир алготрейдинга. Здесь вы познакомитесь с основами MQL5, языка программирования торговых стратегий в MetaTrader 5, который и станет проводником в мир автоматической торговли. Эта статья — от понимания основ до первых шагов в программировании — призвана раскрыть потенциал алготрейдинга для всех читателей, даже для тех, у кого совершенно нет опыта программирования. Надеюсь, вам понравится это путешествие в мир трейдинга с MQL5.
Популяционные алгоритмы оптимизации: Поиск косяком рыб (Fish School Search — FSS)
Поиск косяком рыб (FSS) — новый современный алгоритм оптимизации, вдохновленный поведением рыб в стае, большинство из которых, до 80%, плавают организовано в сообществе сородичей. Доказано, что объединения рыб играют важную роль в эффективности поиска пропитания и защиты от хищников.
Популяционные алгоритмы оптимизации: Дифференциальная эволюция (Differential Evolution, DE)
В этой статье поговорим об алгоритме, который демонстрирует самые противоречивые результаты из всех рассмотренных ранее, алгоритм дифференциальной эволюции (DE).
Мультибот в MetaTrader: запуск множества роботов с одного графика
В этой статье мы рассмотрим простой шаблон для создания универсального робота в MetaTrader, который можно использовать на нескольких графиках, но прицепив его лишь к одному графику, без необходимости настройки каждого экземпляра робота на каждом отдельном графике.
Популяционные алгоритмы оптимизации: Метод Нелдера-Мида, или метод симплексного поиска (Nelder–Mead method, NM)
Статья представляет полное исследование метода Нелдера-Мида объясняя, как симплекс — пространство параметров функции — изменяется и перестраивается на каждой итерации для достижения оптимального решения, а также описывает способ улучшения этого метода.
Магия временных торговых интервалов с инструментом Frames Analyzer
Что такое Frames Analyzer? Это подключаемый модуль к любому торговому эксперту для анализа фреймов оптимизации во время оптимизации параметров в тестере стратегий, а также вне тестера посредством чтения MQD-файла или базы данных, которая создаётся сразу после оптимизации параметров. Вы сможете делиться этими результатами оптимизации с другими пользователями, у которых есть инструмент Frames Analyzer, чтобы обсудить полученные результаты оптимизации вместе.
Стратегия Билла Вильямса с индикаторами и прогнозами и без них
Мы рассмотрим одну из известных стратегий Билла Вильямса и попытаемся улучшить ее с помощью индикаторов и прогнозов.
Возможности Мастера MQL5, которые вам нужно знать (Часть 1): Регрессионный анализ
Современный трейдер почти всегда сознательно или бессознательно находится в поиске новых идей. Он постоянно пробует новые стратегии, модифицирует их и отбрасывает те, что не оправдали себя. Этот исследовательский процесс требует много времени и сопряжен с ошибками. В этой серии статей я постараюсь доказать, что Мастер MQL5 является настоящей опорой трейдера. Благодаря Мастеру, трейдер экономит время при реализации своих идей. Кроме того, снижается вероятность ошибок, возникающих при дублировании кода. Вместо того чтобы тратить время на оформление кода, трейдеры претворяют в жизнь свою торговую философию.
Быстрый тестер торговых стратегий на Python с использованием Numba
В статье реализован быстрый тестер стратегий для моделей машинного обучения с применением Numba. По скорости он превосходит тестер стратегий на чистом Python в 50 раз. Автор рекомендует использовать эту библиотеку для ускорения математических расчетов и особенно там, где используются циклы.
Модель глубокого обучения GRU на Python с использованием ONNX в советнике, GRU vs LSTM
Статья посвящена разработке модели глубокого обучения GRU ONNX на Python. В практической части мы реализуем эту модель в торговом советнике, а затем сравним работу модели GRU с LSTM (долгой краткосрочной памятью).
Скальперский советник Ilan 3.0 Ai с машинным обучением
Помните советник Ilan 1.6 Dymanic? Попробуем улучшить его с помощью машинного обучения! Реанимируем старую разработку в статье и добавляем машинное обучение с Q-таблицей. По шагам.
Эксперименты с нейросетями (Часть 2): Хитрая оптимизация нейросети
Нейросети наше все. Проверяем на практике, так ли это. MetaTrader 5 как самодостаточное средство для использования нейросетей в трейдинге. Простое объяснение.
Популяционные алгоритмы оптимизации: Алгоритм имитации отжига (Simulated Annealing, SA). Часть I
Алгоритм имитации отжига (Simulated Annealing) является метаэвристикой, вдохновленной процессом отжига металлов. В нашей статье проведем тщательный анализ алгоритма и покажем, как многие распространенные представления и мифы, вокруг этого наиболее популярного и широко известного метода оптимизации, могут быть ошибочными и неполными. Анонс второй части статьи: "Встречайте собственный авторский алгоритм имитации изотропного отжига (Simulated Isotropic Annealing, SIA)!"
Разработка робота на Python и MQL5 (Часть 2): Выбор модели, создание и обучение, кастомный тестер Python
Продолжаем цикл статей по созданию торгового робота на Python и MQL5. Сегодня решим задачу выбора и обучения модели, ее тестирования, внедрения кросс-валидации, поиска по сетке, а также задачу ансамблирования моделей.
Python, ONNX и MetaTrader 5: Создаем модель RandomForest с предварительной обработкой данных RobustScaler и PolynomialFeatures
В этой статье мы создадим модель случайного леса на языке Python, обучим модель и сохраним ее в виде конвейера ONNX с препроцессингом данных. Модель мы далее используем в терминале MetaTrader 5.
Тестирование и оптимизация стратегий для бинарных опционов в MetaTrader 5
Проверяем и оптимизируем стратегии для бинарных опционов в MetaTrader 5.
Как выбрать торгового советника: Двадцать явных признаков плохого робота
В этой статье мы попытаемся ответить на вопрос, как выбрать подходящего торгового советника. Какие из них лучше всего подходят для нашего портфеля и как мы можем отсеять большую часть торговых роботов, доступных на рынке? В статье представлены двадцать явных признаков некачественного советника. Статья поможет вам принимать более обоснованные решения и создать коллекцию прибыльных торговых советников.
Теория хаоса в трейдинге (Часть 1): Введение, применение на финансовых рынках и индикатор Ляпунова
Можно ли применять теорию хаоса на финансовых рынках? Чем классическая теория Хаоса и хаотические системы отличаются от концепции, предложенной Биллом Вильямсом, рассмотрим в этой статье.
Модифицированный советник Grid-Hedge в MQL5 (Часть II): Создание простого сеточного советника
В статье рассматривается классическая сеточная стратегия, подробно описана ее автоматизация с помощью советника на MQL5 и проанализированы первоначальные результаты тестирования на истории. Также подчеркивается необходимость в долгом удержании позиций и рассматривается возможность оптимизации ключевых параметров (таких как расстояние, тейк-профит и размеры лотов) в будущих частях. Целью этой серии статей является повышение эффективности торговой стратегии и ее адаптируемости к различным рыночным условиям.
Тестируем информативность разных типов скользящих средних
Мы все знаем важность скользящей средней для многих трейдеров. Существуют разные типы скользящих средних, которые могут быть полезны в торговле. Мы рассмотрим их и проведем простое сравнение, чтобы увидеть, какой из них может показать лучшие результаты.