Статьи с примерами программирования на языке MQL5

icon

Самые разнообразные статьи с примерами по созданию индикаторов и торговых роботов для платформы MetaTrader на языке MQL5 ждут вас. К каждой статье приложены исходные коды, которые вы можете открыть в редакторе MetaEditor и запустить самостоятельно.

Эти статьи будут полезны как новичкам в автоматическом трейдинге, так и подготовленным трейдерам с опытом программирования и торговли. Здесь вы найдете не только примеры, но и новые идеи.

Новая статья
последние | лучшие
preview
Советы профессионального программиста (Часть I): Хранение, отладка и компиляция кодов. Работа с проектами и логами

Советы профессионального программиста (Часть I): Хранение, отладка и компиляция кодов. Работа с проектами и логами

Советы профессионального программиста о методах, приемах и вспомогательных инструментах, облегчающих программирование.
Прочие классы в библиотеке DoEasy (Часть 69): Класс-коллекция объектов-чартов
Прочие классы в библиотеке DoEasy (Часть 69): Класс-коллекция объектов-чартов

Прочие классы в библиотеке DoEasy (Часть 69): Класс-коллекция объектов-чартов

С этой статьи начнём разработку класса-коллекции объектов-чартов, который будет хранить в себе список-коллекцию объектов-чартов с их подокнами и индикаторами в них, и даст возможность работы с любыми выбранными чартами и их подокнами, или сразу со списком из нескольких чартов одновременно.
Прочие классы в библиотеке DoEasy (Часть 68): Класс объекта-окна графика и классы объектов-индикаторов в окне графика
Прочие классы в библиотеке DoEasy (Часть 68): Класс объекта-окна графика и классы объектов-индикаторов в окне графика

Прочие классы в библиотеке DoEasy (Часть 68): Класс объекта-окна графика и классы объектов-индикаторов в окне графика

В статье продолжим разрабатывать класс объекта-чарта. Добавим к нему список объектов-окон графика, в которых в свою очередь будут доступны списки индикаторов, размещённых в них.
preview
Нейросети — это просто (Часть 13): Пакетная нормализация (Batch Normalization)

Нейросети — это просто (Часть 13): Пакетная нормализация (Batch Normalization)

В предыдущей статье мы начали рассматривать методы повышения качества обучения нейронной сети. В данной статье предлагаю продолжить эту тему и рассмотреть такой поход, как пакетная нормализация данных.
Прочие классы в библиотеке DoEasy (Часть 67): Класс объекта-чарта
Прочие классы в библиотеке DoEasy (Часть 67): Класс объекта-чарта

Прочие классы в библиотеке DoEasy (Часть 67): Класс объекта-чарта

В статье создадим класс объекта-чарта (одного графика торгового инструмента) и доработаем класс-коллекцию объектов mql5-сигнал так, чтобы каждый объект-сигнал, хранящийся в коллекции при обновлении списка также обновлял все свои параметры.
Прочие классы в библиотеке DoEasy (Часть 66): Класс-коллекция Сигналов MQL5.com
Прочие классы в библиотеке DoEasy (Часть 66): Класс-коллекция Сигналов MQL5.com

Прочие классы в библиотеке DoEasy (Часть 66): Класс-коллекция Сигналов MQL5.com

В статье создадим класс-коллекцию сигналов Сервиса Сигналов MQL5.com с функциями управления подписанными сигналами, а также доработаем класс объекта-снимка стакана цен для отображения общего объёма стакана на покупку и на продажу.
preview
Многослойный перцептрон и алгоритм обратного распространения ошибки

Многослойный перцептрон и алгоритм обратного распространения ошибки

В последнее время, с ростом популярности этих двух методов появилось много библиотек на Matlab, R, Python, C ++ и т.д., которые получают на вход обучающий набор и автоматически создают соответствующую нейронную сеть для вашей задачи. Мы постараемся понять, как работает базовый тип нейронной сети — перцептрон с одним нейроном и многослойный перцептрон — замечательный алгоритм, который отвечает за обучение сети (градиентный спуск и обратное распространение). Эти сетевые модели будут основой для более сложных моделей, существующих на сегодняшний день.
preview
Нейросети — это просто (Часть 12): Dropout

Нейросети — это просто (Часть 12): Dropout

Продвигаясь дальше в изучении нейронных сетей, наверное, стоит немного уделить внимания методам повышения их сходимости при обучении. Существует несколько таких методов. В этой статье предлагаю рассмотреть один из них — Dropout.
Работа с ценами и Сигналами в библиотеке DoEasy (Часть 65): Коллекция стаканов  и класс для работы с Сигналами MQL5.com
Работа с ценами и Сигналами в библиотеке DoEasy (Часть 65): Коллекция стаканов  и класс для работы с Сигналами MQL5.com

Работа с ценами и Сигналами в библиотеке DoEasy (Часть 65): Коллекция стаканов и класс для работы с Сигналами MQL5.com

В статье создадим класс-коллекцию стаканов цен всех символов и начнём разработку функционала для работы с сервисом сигналов MQL5.com — создадим класс объекта-сигнала.
preview
Полезные и экзотические приемы для автоматической торговли

Полезные и экзотические приемы для автоматической торговли

В данной статье я покажу несколько очень интересных и полезных приемов для автоматической торговли. Часть из этих приемов возможно кому-то знакома, кому-то — нет, но я постараюсь привести самые интересные методы и объяснить почему стоит ими пользоваться. Самое главное, покажу на практике, что они могут. Напишем советники и проверим все описанные приемы на истории котировок.
Работа с ценами в библиотеке DoEasy (Часть 64): Стакан цен, классы объекта-снимка и объекта-серии снимков стакана цен
Работа с ценами в библиотеке DoEasy (Часть 64): Стакан цен, классы объекта-снимка и объекта-серии снимков стакана цен

Работа с ценами в библиотеке DoEasy (Часть 64): Стакан цен, классы объекта-снимка и объекта-серии снимков стакана цен

В статье создадим два класса - класс объекта-снимка стакана цен и класс объекта-серии снимков стакана цен и протестируем создание серии данных стакана цен.
Работа с ценами в библиотеке DoEasy (Часть 63): Стакан цен, класс абстрактной заявки стакана цен
Работа с ценами в библиотеке DoEasy (Часть 63): Стакан цен, класс абстрактной заявки стакана цен

Работа с ценами в библиотеке DoEasy (Часть 63): Стакан цен, класс абстрактной заявки стакана цен

В статье начнём разработку функционала для работы со стаканом цен. Создадим класс объекта абстрактной заявки стакана цен и его наследников.
Работа с ценами в библиотеке DoEasy (Часть 62): Реалтайм-обновление тиковых серий, подготовка к работе со стаканом цен
Работа с ценами в библиотеке DoEasy (Часть 62): Реалтайм-обновление тиковых серий, подготовка к работе со стаканом цен

Работа с ценами в библиотеке DoEasy (Часть 62): Реалтайм-обновление тиковых серий, подготовка к работе со стаканом цен

В статье сделаем реалтайм-обновление коллекции тиковых данных и подготовим класс объекта-символа для работы со стаканом цен, работу над которым начнём со следующей статьи.
preview
Как заработать $1 000 000 в алготрейдинге? На сервисах MQL5.com!

Как заработать $1 000 000 в алготрейдинге? На сервисах MQL5.com!

Каждый трейдер приходит на рынок с целью заработать свой первый миллион долларов. Как это сделать без большого риска и не имея стартового капитала? MQL5 сервисы дают такие возможности разработчикам и трейдерам в любой стране мира.
preview
WebSocket для MetaTrader 5

WebSocket для MetaTrader 5

До появления сетевых функций в обновленном MQL5 API, приложения MetaTrader были ограничены в возможности подключаться и взаимодействовать с сервисами на основе протокола WebSocket. Сейчас ситуация изменилась. В этой статье мы рассмотрим реализацию библиотеки WebSocket на чистом MQL5. Будут представлены краткое описание протокола WebSocket и пошаговое руководство по использованию полученной библиотеки.
Работа с ценами в библиотеке DoEasy (Часть 61): Коллекция тиковых серий символов
Работа с ценами в библиотеке DoEasy (Часть 61): Коллекция тиковых серий символов

Работа с ценами в библиотеке DoEasy (Часть 61): Коллекция тиковых серий символов

Так как в работе программы могут участвовать разные символы, то для каждого символа необходимо создать свой список. Такие списки мы сегодня объединим в коллекцию тиковых данных. По сути это будет обычный список на основе класса динамического массива указателей на экземпляры класса CObject и его наследников Cтандартной библиотеки.
preview
Нейросети — это просто (Часть 10): Multi-Head Attention (многоголовое внимание)

Нейросети — это просто (Часть 10): Multi-Head Attention (многоголовое внимание)

Ранее мы уже рассмотрели механизм само-внимания (self-attention) в нейронных сетях. В практике современных архитектур нейронных сетей используется несколько параллельных потоков self-attention для поиска различных зависимостей между элементами последовательности. Давайте рассмотрим реализацию такого подхода и оценим его влияние на общий результат работы сети.
Работа с ценами в библиотеке DoEasy (Часть 60): Список-серия тиковых данных символа
Работа с ценами в библиотеке DoEasy (Часть 60): Список-серия тиковых данных символа

Работа с ценами в библиотеке DoEasy (Часть 60): Список-серия тиковых данных символа

В статье создадим список для хранения тиковых данных одного символа и проверим его создание и получение из него требуемых данных в советнике. Такие списки тиковых данных — свой для каждого используемого символа — далее будут составлять собою коллекцию тиковых данных.
preview
Нейросети — это просто (Часть 9): Документируем проделанную работу

Нейросети — это просто (Часть 9): Документируем проделанную работу

Мы уже проделали довольно большой путь, и код нашей библиотеке сильно разрастается. Становится сложно отслеживать все связи и зависимости. И конечно, перед продолжением развития проекта нам нужно задокументировать уже проделанную работу и актуализировать документацию на каждом последующем шаге. Правильно подготовленная документация поможет нам увидеть целостность нашей работы.
Работа с ценами в библиотеке DoEasy (Часть 59): Объект для хранения данных одного тика
Работа с ценами в библиотеке DoEasy (Часть 59): Объект для хранения данных одного тика

Работа с ценами в библиотеке DoEasy (Часть 59): Объект для хранения данных одного тика

С данной статьи приступим к созданию функционала библиотеки для работы с ценовыми данными. Сегодня создадим класс объекта, который будет хранить в себе все данные цен, пришедшие с очередным тиком.
preview
Работа с таймсериями в библиотеке DoEasy (Часть 58): Таймсерии данных буферов индикаторов

Работа с таймсериями в библиотеке DoEasy (Часть 58): Таймсерии данных буферов индикаторов

В завершении темы работы с таймсериями организуем хранение, поиск и сортировку данных, хранящихся в буферах индикаторов, что позволит в дальнейшем проводить анализ на основе значений индикаторов, создаваемых на основе библиотеки в своих программах. Общая концепция всех классов-коллекций библиотеки позволяет легко находить нужные данные в соответствующей коллекции, и соответственно, это же будет возможным и в создаваемом сегодня классе.
preview
Нейросети — это просто (Часть 8): Механизмы внимания

Нейросети — это просто (Часть 8): Механизмы внимания

В предыдущих статьях мы уже протестировали различные варианты организации нейронных сетей. В том числе и сверточные сети, заимствованные из алгоритмов обработки изображений. В данной статье я предлагаю рассмотреть механизмы внимания, появление которых дало толчок в развитии языковых моделей.
Использование электронных таблиц для построения торговых стратегий
Использование электронных таблиц для построения торговых стратегий

Использование электронных таблиц для построения торговых стратегий

В статье описаны основные принципы и приёмы, позволяющие провести анализ любой стратегии с помощью электронных таблиц — Excel, Calc, Google. Также сделано сравнение полученных результатов с тестером MetaTrader 5.
preview
Работа с таймсериями в библиотеке DoEasy (Часть 57): Объект данных буфера индикатора

Работа с таймсериями в библиотеке DoEasy (Часть 57): Объект данных буфера индикатора

В статье разработаем объект, который будет содержать в себе все данные одного буфера одного индикатора. Такие объекты потребуются для хранения серийных данных буферов индикаторов, и с помощью которых возможно будет сортировать и сравнивать данные буферов любых индикаторов и других схожих данных между собой.
preview
Работа с таймсериями в библиотеке DoEasy (Часть 56): Объект пользовательского индикатора, получение данных от объектов-индикаторов в коллекции

Работа с таймсериями в библиотеке DoEasy (Часть 56): Объект пользовательского индикатора, получение данных от объектов-индикаторов в коллекции

В статье рассмотрим создание объекта пользовательского индикатора для использования в советниках. Немного доработаем классы библиотеки и напишем методы для получения данных от объектов-индикаторов в экспертах.
preview
Практическое применение нейросетей в трейдинге. Python (Часть I)

Практическое применение нейросетей в трейдинге. Python (Часть I)

В данной статье мы поэтапно разберем вариант реализации торговой системы на основе программирования глубоких нейронных сетей на Python. Для этого мы используем библиотеку машинного обучения TensorFlow, разработанной компанией Google. А для описания нейронных сетей используем библиотеку Keras.
preview
Работа с таймсериями в библиотеке DoEasy (Часть 55): Класс-коллекция индикаторов

Работа с таймсериями в библиотеке DoEasy (Часть 55): Класс-коллекция индикаторов

В статье продолжим развитие классов объектов-индикаторов и их коллекции. Создадим для каждого объекта-индикатора его описание и скорректируем класс-коллекцию для безошибочного хранения и получения объектов-индикаторов из списка-коллекции.
preview
Нейросети — это просто (Часть 6): Эксперименты с коэффициентом обучения нейронной сети

Нейросети — это просто (Часть 6): Эксперименты с коэффициентом обучения нейронной сети

Мы уже рассмотрели некоторые виды нейронных сетей и способы их реализации. Во всех случаях мы использовали метод градиентного спуска для обучения нейронных сетей, который предполагает выбор коэффициента обучения. В данной статье, я хочу на примерах показать важность правильного выбора и его влияние на обучение нейронной сети.
Пишем Twitter-клиент для MetaTrader: Часть 2
Пишем Twitter-клиент для MetaTrader: Часть 2

Пишем Twitter-клиент для MetaTrader: Часть 2

Реализуем Twitter-клиент в виде MQL-класса, позволяющего отправлять твиты с картинками. Подключив всего один автономный include-файл, вы сможете публиковать твиты и выкладывать свои графики и сигналы.
preview
Работа с таймсериями в библиотеке DoEasy (Часть 52): Кроссплатформенность мультипериодных мультисимвольных однобуферных стандартных индикаторов

Работа с таймсериями в библиотеке DoEasy (Часть 52): Кроссплатформенность мультипериодных мультисимвольных однобуферных стандартных индикаторов

В статье рассмотрим создание мультисимвольного мультипериодного стандартного индикатора Accumulation/Distribution. Чтобы программы, написанные под устаревшую платформу MetaTrader 4, основанные на данной библиотеке, могли нормально работать при переходе на MetaTrader 5, мы немного доработаем классы библиотеки касаемо индикаторов.
Пишем Twitter-клиент для MetaTrader 4 и MetaTrader 5 без использования DLL
Пишем Twitter-клиент для MetaTrader 4 и MetaTrader 5 без использования DLL

Пишем Twitter-клиент для MetaTrader 4 и MetaTrader 5 без использования DLL

Хотите получать твиты или публиковать свои торговые сигналы в Твиттере? Больше не нужно искать решения — в этой серии статей мы рассмотрим, как работать с Твиттером без использования DLL. Мы вместе реализуем Tweeter API с помощью MQL. В первой статье начнем с возможностей аутентификации и авторизации в с Twitter API.
preview
Работа с таймсериями в библиотеке DoEasy (Часть 51): Составные мультипериодные мультисимвольные стандартные индикаторы

Работа с таймсериями в библиотеке DoEasy (Часть 51): Составные мультипериодные мультисимвольные стандартные индикаторы

В статье завершим разработку объектов мультисимвольных мультипериодных стандартных индикаторов. На примере стандартного индикатора Ichimoku Kinko Hyo разберём создание сложносоставных пользовательских индикаторов, имеющих вспомогательные рисуемые буферы для отображения данных на графике.
preview
Нейросети — это просто (Часть 3): Сверточные сети

Нейросети — это просто (Часть 3): Сверточные сети

Продолжая тему нейронных сетей, предлагаю рассмотреть сверточные нейронные сети. Данный тип нейронных сетей был разработан для поиска объектов на изображении. Рассмотрим, как он может нам помочь в работе на финансовых рынках.
preview
Работа с таймсериями в библиотеке DoEasy (Часть 50): Мультипериодные мультисимвольные стандартные индикаторы со смещением

Работа с таймсериями в библиотеке DoEasy (Часть 50): Мультипериодные мультисимвольные стандартные индикаторы со смещением

В статье доработаем методы библиотеки для корректного отображения мультисимвольных мультипериодных стандартных индикаторов, линии которых выводятся на график текущего символа со смещением, задаваемым в настройках. А также наведём порядок в методах работы со стандартными индикаторами и уберём в область библиотеки лишний код в итоговой программе-индикаторе.
preview
Работа с таймсериями в библиотеке DoEasy (Часть 49): Мультипериодные мультисимвольные многобуферные стандартные индикаторы

Работа с таймсериями в библиотеке DoEasy (Часть 49): Мультипериодные мультисимвольные многобуферные стандартные индикаторы

В статье доработаем классы библиотеки для возможности создания мультисимвольных мультипериодных стандартных индикаторов, требующих для отображения своих данных несколько индикаторных буферов.
Работа с таймсериями в библиотеке DoEasy (Часть 48): Мультипериодные мультисимвольные индикаторы на одном буфере в подокне
Работа с таймсериями в библиотеке DoEasy (Часть 48): Мультипериодные мультисимвольные индикаторы на одном буфере в подокне

Работа с таймсериями в библиотеке DoEasy (Часть 48): Мультипериодные мультисимвольные индикаторы на одном буфере в подокне

В статье рассмотрим пример создания мультисимвольных мультипериодных стандартных индикаторов, использующих для своих построений один индикаторный буфер, и работающих в подокне графика. Подготовим классы библиотеки для работы со стандартными индикаторами, работающими в основном окне программы, или имеющими более одного буфера для вывода своих данных.
preview
Нейросети — это просто (Часть 2): Обучение и тестирование сети

Нейросети — это просто (Часть 2): Обучение и тестирование сети

В данной статье мы продолжим изучение нейронных сетей, начатое в предыдущей статье и рассмотрим пример использования в советниках созданного нами класса CNet. Рассмотрены две модели нейронной сети, которые показали схожие результаты как по времени обучения, так и по точности предсказания.
Система голосовых уведомлений торговых событий и сигналов
Система голосовых уведомлений торговых событий и сигналов

Система голосовых уведомлений торговых событий и сигналов

В настоящее время голосовые помощники уже давно заняли заметную роль в жизни человека, будь то навигатор, голосовой поисковик или же переводчик. Поэтому в данной статье я постараюсь разработать простую и понятную систему голосовых уведомлений для различных торговых событий, состояниях рынка или же сигналов торговых систем.
Работа с таймсериями в библиотеке DoEasy (Часть 46): Мультипериодные, мультисимвольные индикаторные буферы
Работа с таймсериями в библиотеке DoEasy (Часть 46): Мультипериодные, мультисимвольные индикаторные буферы

Работа с таймсериями в библиотеке DoEasy (Часть 46): Мультипериодные, мультисимвольные индикаторные буферы

В статье доработаем классы объектов индикаторных буферов для работы в мультисимвольном режиме. Таким образом у нас будет готово всё для создания в своих программах мультисимвольных мультипериодных индикаторов. Добавим недостающий функционал объектам расчётных буферов, что позволит создавать мультисимвольные мультипериодные стандартные индикаторы.
Работа с таймсериями в библиотеке DoEasy (Часть 45): Мультипериодные индикаторные буферы
Работа с таймсериями в библиотеке DoEasy (Часть 45): Мультипериодные индикаторные буферы

Работа с таймсериями в библиотеке DoEasy (Часть 45): Мультипериодные индикаторные буферы

В статье начнём доработку объектов-индикаторных буферов и класса коллекции буферов для работы в мультипериодном и мультисимвольном режимах. В данной статье рассмотрим работу объектов-буферов для получения и вывода данных с любого таймфрейма на текущий график текущего символа.