MT4のポートフォリオトレード
この記事では、ポートフォリオトレードの原則と外国為替相場への応用を明らかにします。簡単な数学的ポートフォリオの配置モデルが考えられています。半自動化されたトレードのポートフォリオのインジケーターとEA:この記事では、実用的なMT4でのポートフォリオトレードの実装例があります。トレード戦略、ならびに利点と落とし穴の要素が記載されています。
インディケータTaichi - 一目均衡表の値を公式化するシンプルな考え方
一目の信号を解釈するのはむつかしいですか?本稿では、一目均衡表の値と信号を公式化する基本をいくつか紹介します。その使用を可視化するために、私は自分の好みに応じて通貨ペア EURUSD を選択しました。ただしインディケータはどんな通貨ペアにも使用可能です。
カスタムインジケーターに基づくトレーディングシグナルジェネレーター
カスタムインジケーターに基づくトレーディングシグナルジェネレーターはどのように作成するのでしょうか?カスタムインジケーターはどのように作成するのでしょうか?カスタムインジケーターのデータへのアクセスはどのように取得するのでしょうか?IS_PATTERN_USAGE(0) ストラクチャーとモデルがなぜ必要なのでしょうか?
f()10分でできるMQL5 のためのDLL (パート II): Visual Studio 2017で作成
元の基本となる記事との関連性は失われていませんが、このトピックに興味がある場合は、まず最初の記事を読んでください。 しかし、前回の記事から時間が経過しているので、現在の Visual Studio 2017 には、更新されたインターフェイスがあります。 また、MetaTrader5プラットフォームにも新しい機能が追加されました。 この記事では、DLLのプロジェクト開発、およびセットアップと MetaTrader5 ツールとのやり取りについて説明します。
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第1部)概念、データ管理および最初の結果
膨大な数の取引戦略やMetaTrader 5およびMetaTrader 4ターミナル用アプリケーションの開発の注文、さまざまなMetaTrader Webサイトを分析しているうちに、私は、このすべての多様性のほとんどが、異なるプログラムで定期的に現れる同じ基本的な機能、行動、および価値観に基づいているという結論に達しました。これにより、МetaТrader5およびМetaТrader4アプリケーションを簡単かつ迅速に開発するためのDoEasyクロスプラットフォームライブラリが完成しました。
ボリンジャーバンドによる取引システムの設計方法を学ぶ
この記事では、取引の世界で最も人気のある指標の1つであるボリンジャーバンドについて学びます。テクニカル分析を検討し、ボリンジャーバンド指標に基づいてアルゴリズム取引システムを設計する方法を確認します。
ビジュアルストラテジービルダー。 プログラミングなしでトレーディングロボットを作成する
この記事では、ビジュアルストラテジービルダーを紹介します。 ユーザーがプログラミングせずにトレードロボットやユーティリティを作成する方法について紹介します。 作成されたEAは、完全に機能し、ストラテジーテスターでテストすることができます。また、クラウドで最適化またはリアルタイムチャートでライブ実行することも可能です。
80-20 トレード戦略
この記事では、80-20 トレード戦略を分析するためツール (インジケーターおよびEA) の開発について説明します。トレードルールは"ストリートスマート"より引用します。リンダラッシュクとローレンス · コナーズによる"短期的なトレード戦略”です。mql5を使用して、戦略ルールを定式化し、最近の相場のヒストリーベースで、インディケータとEAをテストします。
トレーダーのリスクを低減するには
金融市場における取引には広範囲のリスクがつきもので、これらは取引システムのアルゴリズムで考慮されるべきです。そのようなリスクを低減することは、取引で利益を得るために最も重要な課題です。
テクニカル分析と市場予測の手法について
本稿は、チャートなどを使用した視覚的思考と、"箱から出した"市場見通しを通じ、よく知られた数学的手法の能力と可能性について考察しています。 一方で、本稿は、トレードの考え方を再考する想像力を得ることがでますので、幅広く皆さんの注目を集めると思います。また他方で、本稿は幅広い分析および予測ツールについての代替開発並びにプログラムコードの実装に役立つでしょう。
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第25部): 取引サーバから返されたエラーの処理
サーバに取引注文を送信した後は、エラーコードやエラーがないことを確認する必要があります。本稿では、取引サーバによって返されるエラーの処理について考察し、未決取引リクエストを作成する準備をします。
自己適応アルゴリズムの開発(第I部):基本的なパターンの検索
この連載では、ほとんどの市場要因を考慮した自己適応アルゴリズムの開発を示すとともに、これらの状況を体系化してロジックで説明し、取引活動で考慮に入れる方法を示します。非常に単純なアルゴリズムから始めて、徐々に理論を習得し、非常に複雑なプロジェクトに進化していきます。
Expert Advisor Code で簡単にエラーを検出しリカバリする方法
Expert Advisor の作成では、コードエラーの検出およびリカバリの質問はひじょうに重要なものです。独特なのは、ちょうど良いタイミングで検出されないエラーが、すでに第一の検証段階にあるトレーディングシステムの貴重な考えを台無しにしてしまうことです。賢明な EA 作成者がだれしもそういった問題を一番最初から考慮に入れるのはそのためです。本稿では、このむつかしい問題に役立つ方法をいくつか詳しく説明します。
オープニングレンジブレイクアウト日中取引戦略の解読
オープニングレンジブレイクアウト(ORB)戦略は、市場が開いた直後に形成される初期の取引レンジが、買い手と売り手が価値に合意する重要な価格レベルを反映しているという考えに基づいて構築されています。特定のレンジを上抜けまたは下抜けするブレイクアウトを特定することで、市場の方向性が明確になるにつれて発生することが多いモメンタムを利用し、トレーダーは利益を狙うことができます。本記事では、Concretum Groupの論文から応用した3つのORB戦略を紹介します。
強化学習におけるモンテカルロ法の応用
自己学習を行うEAを作成するためのReinforcement learningの適用。前回の記事では、Random Decision Forestアルゴリズムを学び、Reinforcement learning(強化学習)に基づく簡単な自己学習EAを作成しました。このアプローチの主な利点は、取引アルゴリズムを書くことの単純さと『学習」の高速性でした。強化学習(以下、単にRL)は、どのEAにも簡単に組み込むことができ、最適化のスピードを上げられます。
MQL5を使用したカスタムインディケータ(平均足)の作成方法
この記事では、MQL5を使用して好みに基づいてカスタムインディケータを作成し、MetaTrader 5でチャートの読み取りに使用したり、自動エキスパートアドバイザー(EA)で使用したりする方法を学びます。
シグナルのクイック評価:トレーディング、ドローダウン/ロードとMFE/ MAE配信チャート
購読者は、多くの場合、シグナルプロバイダーのアカウントの総成長を分析することによって、適切なシグナルを検索します。しかし、特定のトレード戦略の潜在的なリスクを分析することも重要です。この記事では、その性能に基づいてトレードシグナルを評価するための簡単かつ効率的な方法を紹介します。
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第15部): 銘柄オブジェクトのコレクション
本稿では、前の記事で開発した抽象銘柄オブジェクトに基づく銘柄コレクションの作成を検討します。抽象銘柄の子孫は、銘柄データを明確にし、プログラム内での基本的な銘柄オブジェクトプロパティの可用性を定義します。このような銘柄オブジェクトは、グループとの関係によって区別されます。
トレンドとは何か、相場の構造はトレンドかレンジかで決まるのか?
トレーダーはよくトレンドやレンジについて話しますが、トレンドやレンジとは何かを理解している人はほとんどおらず、概念を明確に説明できる人はさらにいません。 基本的な用語について考察することは、多くの場合、偏見や誤解の固まりに悩まされます。 しかし、利益を上げたいのであれば、概念の数学的・論理的な意味を理解する必要があります。 今回は、トレンドとレンジの本質に迫るとともに、相場の構造がトレンドなのか、レンジなのか、何か別のものなのかを定義してみたいと思います。 また、トレンド相場やレンジ相場で利益を出すための最適な戦略についても考えていきたいと思います。
МetaТrader 4のイベント
この記事は、注文のオープン、クローズ、変更などのイベントを観測するМetaТrader 4ターミナルのプログラムに着目しており、MQL4でのプログラミングやターミナルを扱う基本的なスキルを持つユーザーを想定して書かれています。
マシンラーニング:サポートベクターマシンをトレーディングで利用する方法
「サポートベクターマシン」は生物情報学分野でこれまで長く利用され、複雑なデータセットを評価し、データ分類すに利用できる有用なパターンを抽出するため数学を利用しています。本稿はサポートベクターマシンとは何か、それがどのように役立つか、またなぜ複雑なパターンを抽出するのに便利かを考察します。そしてそれをマーケットに応用する方法、およびトレードを行う上で将来役立つであろう使用方法を調査します。また「サポートベクターマシン学習ツール」を使用し、読者のみなさんがご自身のトレーディングで実験することができる実用例を提供します。
MQL5ウィザード:トレーディングシグナル用モジュール作成方法
この記事は、価格のクロスオーバーと移動平均に関するシグナルの実行とともに、トレーディングシグナルクラスの記述方法、 MQL5ウィザードのトレーディングストラテジー生成プログラムへの挿入方法、MQL5ウィザードにおいて生成されるクラスの記述フォーマットやストラクチャーについて紹介します。
Expert Advisors最適化のカスタム基準作成
MetaTrader 5 クライアント端末は Expert Advisor パラメータを最適化する幅広い機会を提供します。またストラレジーテスタに含まれる最適化評価基準に対して、開発者には自身の基準を作成するチャンスが与えられています。これは Expert Advisorsを検証し最適化する数えきれない可能性に導きます。本稿ではそのような基準を、複雑なもの単純なもの双方、作成する実践的方法について記述します。
指定されたマジックナンバーによるトータルポジションボリューム計算のための最適化された手法
本稿では指定されたシンボルのトータルポジションボリューム計算とマジックナンバーに関する問題について考察します。提案する手法では取引履歴の最小限を要求し、トータルポジションがゼロに最も近い時刻を見つけ、最近の取引についての計算を行います。クライアント端末のグローバル変数による作業も考察します。
MetaTraderプログラムを簡単かつ迅速に開発するためのライブラリ(第14部): 銘柄オブジェクト
本稿では、銘柄コレクションを作成するための基本オブジェクトとなる銘柄オブジェクトクラスを作成します。このクラスによって、さらなる分析と比較に必要な銘柄のデータを取得できるようになります。
標準ライブラリのトレーディングストラテジークラスの探求- ストラテジーのカスタマイズ
この記事では、トレーディングストラテジークラスの標準ライブラリをどのように探求していくか、そして、カスタムストラテジーやフィルター/シグナルをMQL5ウィザードのパターン・モデルロジックを用いてどのように追加するかについて紹介したいと思います。最終的に、MetaTrader5の標準インジケーターを用いて独自の戦略を追加できるようになり、MQL5ウィザードがシンプルで強力なコードや、機能的なエキスパートアドバイザーを作成できるようになります。
ディナポリ取引システム
本稿では、ジョー・ディナポリによって開発されたフィボレベルベースの取引システムについて説明します。システムの背後にあるアイデアと主なコンセプトが説明され、それらをさらに明確にする、シンプルな指標が例として示されます。
時系列の予測(第1部):経験的分解モード(EMD)法
この記事では、経験的分解モードに基づいて時系列を予測するアルゴリズムの理論と実際の使用法について説明します。また、このメソッドのMQL実装を提案し、テスト指標とエキスパートアドバイザーを提示します。
遺伝的アルゴリズムー数学
遺伝的アルゴリズムは最適化の問題を解決するために使用されます。このような問題の例として、ニューロネットワークの学習、つまりエラーを最小限にするための、このような重み値の選択を用いることができます。遺伝的アルゴリズムのベースにはランダム探索法があります。
市場とそのグローバルパターンの物理学
本稿では、市場を少しでも理解してるシステムはどれでも世界規模で運用できるという前提を試してみます。理論やパターンは発明せずに既知の事実のみを使用し、これらの事実を徐々に数学的分析の言語に翻訳していきます。
3つのラインブレイクチャートを作成するためのインディケータ
本稿は Steve Nison 氏が著書 "Beyond Candlesticks" で提案している「3つのラインブレークチャート」について取り上げます。このチャートの最大のメリットはそれにより前の変動に関して価格のマイナー変動にフィルターを描けることができることです。チャート作成の原則、インディケータのコード、それに基づくトレーディング戦略例についてお話していこうと思います。
MACDによる取引システムの設計方法を学ぶ
今回は、このシリーズの新しいツール、MACD(Moving Average Convergence Divergence、移動平均収束発散)に基づいた取引システムの設計方法について学びます。
ろうそく方向の統計的回帰研究
やってくる短い時間間隔に対して、ろうそく足インディケータの定期的な傾向を基に、1日の特定時刻の市場動向を予想することは可能なのでしょうか?まず第一にそのような発生が検出されるなら、可能です。この疑問はおそらくどのトレーダーの心にも浮かんだことのあるものでしょう。本稿の目的は、ろうそく足の方向の統計的回帰に基づき、特定の時間間隔で市場動向の予想を試みることです。
ベイズ分類器及び特異スペクトル解析法に基づく指標を用いた市場動向の予測
本稿では、ベイズの定理に基づいた特異スペクトル解析(SSA)と重要な機械学習法の予測機能を組み合わせて、時間効率の良い取引のための推奨システムを構築するというイデオロギーと方法論について検討します。
機械学習を使いこなすには
アルゴリズム取引に関するトレーダーの知識の向上に役立つ資料を集めたので、チェックしてみてください。単純なアルゴリズムの時代は過ぎ去りつつあり、機械学習技術やニューラルネットワークを使用せずに成功することは難しくなっています。
レンコチャートにおけるインジケーター
この記事は、MQL5のレンコチャートとその実装の例を紹介します。このインジケーターの修正は、古典的なチャートとは異なります。インジケーターウィンドウ、メインチャート上の両方で構築できます。さらに、ジグザグインジケーターがあります。そのチャートの実装例をいくつかご確認ください。
PythonとMetaTrader5 Pythonパッケージを使用した深層学習による予測と注文とONNXモデルファイル
このプロジェクトでは、金融市場における深層学習に基づく予測にPythonを使用します。平均絶対誤差(MAE)、平均二乗誤差(MSE)、R二乗(R2)などの主要なメトリクスを使用してモデルのパフォーマンスをテストする複雑さを探求し、すべてを実行ファイルにまとめる方法を学びます。また、そのEAでONNXモデルファイルを作成します。
フラクタル指数とハースト指数の財務時系列を予測する能力の評価
金融データのフラクタル行動の探索に関する研究は、経済時系列の一見混沌とした行動の背後に、参加者の集団行動の隠されたメカニズムがあることを前提にしています。 これらのメカニズムは、価格シリーズの特性を定義することができ、取引所の価格ダイナミクスの出現につながることができます。 これをトレーディングに適用すると、実際に関連するスケールと時間枠のフラクタルパラメータを効率的かつ確実に推定できるインジケータの恩恵を受けることができます。