Artículos sobre simulación de estrategias en el lenguaje MQL5

icon

¿Cómo podemos desarrollar, escribir y probar una estrategia comercial, cómo podemos encontrar los parámetros óptimos del sistema y cómo podemos analizar los resultados obtenidos? La plataforma MetaTrader ofrece a los desarrolladores de robots comerciales un abanico de posibilidades para una comprobación rápida y precisa de las ideas comerciales.  Lea estos artículos para llegar a saber cómo probar los robots multidivisas y usar las posibilidades de MQL5 Cloud Network para la optimización.

A los desarrolladores de los sistemas automáticos de trading les recomendamos empezar a estudiar a partir de los fundamentos de la simulación y los algoritmos de generación de ticks en el Probador de Estrategias.

Nuevo artículo
últimas | mejores
preview
Desarrollamos un asesor experto multidivisa (Parte 6): Automatizamos la selección de un grupo de instancias

Desarrollamos un asesor experto multidivisa (Parte 6): Automatizamos la selección de un grupo de instancias

Tras optimizar una estrategia comercial, obtendremos conjuntos de parámetros en base a los cuales podremos crear varias instancias (ejemplares) de estrategias comerciales combinadas en un asesor experto. Antes lo hacíamos manualmente, pero ahora trataremos de automatizar el proceso
preview
Algoritmos de optimización de la población: microsistema inmune artificial (Micro Artificial immune system, Micro-AIS)

Algoritmos de optimización de la población: microsistema inmune artificial (Micro Artificial immune system, Micro-AIS)

El artículo habla de un método de optimización basado en los principios del sistema inmune del organismo -Micro Artificial immune system, (Micro-AIS)-, una modificación del AIS. El Micro-AIS usa un modelo más simple del sistema inmunitario y operaciones sencillas de procesamiento de la información inmunitaria. El artículo también analizará las ventajas e inconvenientes del Micro-AIS en comparación con el AIS convencional.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 12): Nacimiento del SIMULADOR (II)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 12): Nacimiento del SIMULADOR (II)

Desarrollar un simulador puede resultar mucho más interesante de lo que parece. Así que demos algunos pasos más en esta dirección, porque las cosas están empezando a ponerse interesantes.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 05): Vistas previas

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 05): Vistas previas

Hemos logrado desarrollar una forma de ejecutar la repetición de mercado de manera bastante realista y aceptable. Ahora, vamos a continuar con nuestro proyecto y agregar datos para mejorar el comportamiento de la repetición.
preview
Algoritmos de optimización de la población: Algoritmo Mind Evolutionary Computation (Computación Evolutiva Mental, (MEC)

Algoritmos de optimización de la población: Algoritmo Mind Evolutionary Computation (Computación Evolutiva Mental, (MEC)

En este artículo, analizaremos un algoritmo de la familia MEC llamado algoritmo MEC Simple de evolución mental (Simple MEC, SMEC). El algoritmo se caracteriza por la belleza de la idea expuesta y su sencillez de aplicación.
preview
Desarrollamos un asesor experto multidivisa (Parte 13): Automatización de la segunda fase: selección en grupos

Desarrollamos un asesor experto multidivisa (Parte 13): Automatización de la segunda fase: selección en grupos

Ya hemos puesto en marcha la primera fase del proceso de optimización automatizada. Para distintos símbolos y marcos temporales, realizamos la optimización utilizando varios criterios y almacenamos información sobre los resultados de cada pasada en la base de datos. Ahora vamos a seleccionar los mejores grupos de conjuntos de parámetros de entre los encontrados en la primera etapa.
preview
Características del Wizard MQL5 que debe conocer (Parte 23): Redes neuronales convolucionales (CNNs, Convolutional Neural Networks)

Características del Wizard MQL5 que debe conocer (Parte 23): Redes neuronales convolucionales (CNNs, Convolutional Neural Networks)

Las redes neuronales convolucionales son otro algoritmo de aprendizaje automático que tiende a especializarse en descomponer conjuntos de datos multidimensionales en partes constituyentes clave. Examinamos cómo se consigue esto normalmente y exploramos una posible aplicación para los operadores en otra clase de señal del asistente MQL5.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 13): Nacimiento del SIMULADOR (III)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 13): Nacimiento del SIMULADOR (III)

Aquí optimizaremos un poco las cosas para facilitar lo que haremos en el próximo artículo. Y también te explicaré cómo puedes visualizar lo que está generando el simulador en términos de aleatoriedad.
preview
Teoría de categorías en MQL5 (Parte 15): Funtores con grafos

Teoría de categorías en MQL5 (Parte 15): Funtores con grafos

El artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5, analizando los funtores como un puente entre grafos y conjuntos. Volveremos nuevamente a los datos del calendario y, a pesar de sus limitaciones en el uso de un simulador de estrategias, justificaremos el uso de funtores para predecir la volatilidad mediante la correlación.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 14): Nacimiento del SIMULADOR (IV)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 14): Nacimiento del SIMULADOR (IV)

En este artículo, continuaremos con la fase de desarrollo del simulador. Sin embargo, ahora veremos cómo crear efectivamente un movimiento del tipo "RANDOM WALK" (paseo aleatorio). Este tipo de movimiento es bastante intrigante, ya que sirve de base para todo lo que sucede en el mercado de capitales. Además, comenzarás a comprender algunos conceptos esenciales para quienes realizan análisis de mercado.
preview
Desarrollo de un sistema de repetición (Parte 39): Pavimentando el terreno (II)

Desarrollo de un sistema de repetición (Parte 39): Pavimentando el terreno (II)

Antes de comenzar la segunda fase del desarrollo, es necesario reforzar algunas ideas. Entonces, ¿sabes cómo forzar al MQL5 a hacer lo que es necesario? ¿Has intentado ir más allá de lo que informa la documentación? Si no, prepárate. Porque empezaré a hacer cosas mucho más allá de lo que la mayoría hace normalmente.
preview
Características del Wizard MQL5 que debe conocer (Parte 12): Polinomio de Newton

Características del Wizard MQL5 que debe conocer (Parte 12): Polinomio de Newton

El polinomio de Newton, que crea ecuaciones cuadráticas a partir de un conjunto de unos pocos puntos, es un enfoque arcaico pero interesante para observar una serie temporal. En este artículo tratamos de explorar qué aspectos podrían ser de utilidad para los operadores desde este enfoque, así como abordar sus limitaciones.
preview
Desarrollo de un sistema de repetición (Parte 42): Proyecto Chart Trade (I)

Desarrollo de un sistema de repetición (Parte 42): Proyecto Chart Trade (I)

Vamos a crear algo más interesante. El código que mostré antes quedará completamente obsoleto. No quiero arruinar la sorpresa. Sigue el artículo para entender mejor. Desde el inicio de esta secuencia sobre cómo desarrollar un sistema de repetición/simulación, he dicho que la idea es usar la plataforma MetaTrader 5 de manera idéntica, tanto en el sistema que estamos desarrollando como en el mercado real. Es importante que esto se haga de manera adecuada. No querrás entrenar y aprender a luchar usando determinadas herramientas y en el momento de la pelea tener que usar otras.
preview
Desarrollo de un sistema de repetición (Parte 34): Sistema de órdenes (III)

Desarrollo de un sistema de repetición (Parte 34): Sistema de órdenes (III)

En este artículo concluiremos la primera fase de la construcción. Aunque será algo relativamente rápido, explicaré detalles que quizás no se comentaron anteriormente. Pero aquí explicaré algunas cosas que mucha gente no entiende por qué son como son. Uno de estos casos es el del ratón. ¡¡¡¿Sabes por qué tienes que pulsar la tecla Shift o Ctrl en tu teclado?!!!
preview
El enfoque cuantitativo en la gestión de riesgos: Aplicación de un modelo VaR para la optimización de portafolios multidivisa con Python y MetaTrader 5

El enfoque cuantitativo en la gestión de riesgos: Aplicación de un modelo VaR para la optimización de portafolios multidivisa con Python y MetaTrader 5

Este artículo revelará el potencial del modelo Value at Risk (VaR) para optimizar un portafolio multidivisa. Usando el poder de Python y la funcionalidad de MetaTrader 5, hoy demostraremos cómo implementar el análisis VaR para la asignación eficiente de capital y la gestión de posiciones. Desde los fundamentos teóricos hasta la aplicación práctica, el artículo abarcará todos los aspectos de la aplicación de uno de los sistemas de cálculo del riesgo más sólidos, el VaR, a la negociación algorítmica.
preview
Teoría de categorías (Parte 9): Acciones de monoides

Teoría de categorías (Parte 9): Acciones de monoides

El presente artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5. En este artículo examinaremos las acciones de los monoides como un medio de transformación de los monoides descritos en el artículo anterior para aumentar sus aplicaciones.
preview
Desarrollamos un asesor experto multidivisa (Parte 9): Recopilamos los resultados de optimización de las instancias individuales de una estrategia comercial

Desarrollamos un asesor experto multidivisa (Parte 9): Recopilamos los resultados de optimización de las instancias individuales de una estrategia comercial

Hoy vamos a esbozar los principales pasos para desarrollar nuestro EA. Uno de los primeros será realizar una optimización en una sola instancia de la estrategia comercial desarrollada. Así, intentaremos reunir en un solo lugar toda la información necesaria sobre las pasadas del simulador durante la optimización.
preview
Desarrollo de un sistema de repetición (Parte 45): Proyecto Chart Trade (IV)

Desarrollo de un sistema de repetición (Parte 45): Proyecto Chart Trade (IV)

Lo principal en este artículo es precisamente la presentación y explicación de la clase C_ChartFloatingRAD. Tenemos el indicador Chart Trade, que funciona de una manera bastante interesante. No obstante, si te das cuenta, aún tenemos un número bastante reducido de objetos en el gráfico. Y aun así, tenemos exactamente el comportamiento esperado. Se pueden editar los valores presentes en el indicador. La pregunta es: ¿Cómo es esto posible? En este artículo comenzarás a entenderlo.
preview
Desarrollamos un asesor experto multidivisa (Parte 18): Automatización de la selección de grupos considerando el periodo forward

Desarrollamos un asesor experto multidivisa (Parte 18): Automatización de la selección de grupos considerando el periodo forward

Seguimos automatizando los pasos que antes realizábamos manualmente. Esta vez regresaremos a la automatización de la segunda etapa, es decir, a la selección del grupo óptimo de instancias únicas de estrategias comerciales, complementándola con la posibilidad de considerar los resultados de las instancias en el periodo anterior.
preview
Desarrollo de un sistema de repetición (Parte 33): Sistema de órdenes (II)

Desarrollo de un sistema de repetición (Parte 33): Sistema de órdenes (II)

Vamos a continuar el desarrollo del sistema de órdenes, pero verás que haremos una reutilización masiva de cosas ya vistas en otros artículos. Aun así, tendremos una pequeña recompensa en este artículo. Desarrollaremos, en primer lugar, un sistema que pueda ser operado junto al servidor de negociación real, ya sea usando una cuenta demo o una cuenta real. Haremos uso masivo y extensivo de la plataforma MetaTrader 5 para proporcionarnos todo el soporte que necesitaremos en este inicio de viaje.
preview
Desarrollo de un sistema de repetición (Parte 40): Inicio de la segunda fase (I)

Desarrollo de un sistema de repetición (Parte 40): Inicio de la segunda fase (I)

Esta es la nueva fase del sistema de repetición/simulación. En esta etapa, la conversación será realmente una conversación, y el contenido se volverá bastante denso. Les insto a leer el artículo con atención y a utilizar siempre las referencias que se proporcionen. Esto les ayudará a comprender mejor lo que se les está explicando.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 03):  Haciendo ajustes (I)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 03): Haciendo ajustes (I)

Pongamos las cosas en su sitio, porque este comienzo no ha sido de los mejores. Si no lo hacemos ahora, pronto tendremos problemas.
preview
Teoría de categorías en MQL5 (Parte 16): Funtores con perceptrones multicapa

Teoría de categorías en MQL5 (Parte 16): Funtores con perceptrones multicapa

Seguimos analizando los funtores y cómo se pueden implementar utilizando redes neuronales artificiales. Dejaremos temporalmente el enfoque que implica el pronóstico de la volatilidad e intentaremos implementar nuestra propia clase de señales para establecer señales de entrada y salida para una posición.
preview
Desarrollo de un sistema de repetición (Parte 30): Proyecto Expert Advisor — Clase C_Mouse (IV)

Desarrollo de un sistema de repetición (Parte 30): Proyecto Expert Advisor — Clase C_Mouse (IV)

Aquí te mostraré una técnica que puede ayudarte mucho en varios momentos de tu vida como programador. En contra de lo que muchos dicen, lo limitado no es la plataforma, sino los conocimientos del individuo que lo dice. Lo que se explicará aquí es que con un poco de sentido común y creatividad, se puede hacer que la plataforma MetaTrader 5 sea mucho más interesante y versátil, sin tener que crear programas locos ni nada por el estilo puedes crear un código sencillo, pero seguro y fiable. Utiliza tu ingenio para domar el código con el fin de modificar algo que ya existe, sin eliminar ni añadir una sola línea al código original.
preview
Desarrollo de un sistema de repetición (Parte 36): Haciendo retoques (II)

Desarrollo de un sistema de repetición (Parte 36): Haciendo retoques (II)

Una de las cosas que más nos puede complicar la vida como programadores es el hecho de suponer cosas. En este artículo, te mostraré los peligros de hacer suposiciones: tanto en la parte de programación MQL5, donde se asume que un tipo tendrá un tamaño determinado, como cuando se utiliza MetaTrader 5, donde se asume que los diferentes servidores funcionan de la misma manera.
preview
Desarrollo de un sistema de repetición (Parte 37): Pavimentando el terreno (I)

Desarrollo de un sistema de repetición (Parte 37): Pavimentando el terreno (I)

En este artículo, vamos a empezar a hacer algo que ojalá hubiera hecho hace mucho más tiempo. Sin embargo, debido a la falta de "terreno firme", no me sentía seguro para presentarlo públicamente. Ahora, tengo las bases para poder hacer lo que vamos a empezar a hacer a partir de ahora. Es una buena idea centrarse al máximo en comprender el contenido de este artículo, y no lo digo para que lo leas por leer. Quiero y necesito recalcar que, si no entiendes este artículo en concreto, puedes abandonar por completo cualquier esperanza de comprender el contenido de los siguientes.
preview
Desarrollamos un asesor experto multidivisa (Parte 17): preparación adicional para el trading real

Desarrollamos un asesor experto multidivisa (Parte 17): preparación adicional para el trading real

Ahora nuestro EA utiliza una base de datos para recuperar las cadenas de inicialización de instancias individuales de estrategias comerciales. Sin embargo, la base de datos es bastante voluminosa y contiene mucha información innecesaria para el funcionamiento real del asesor experto. Vamos a intentar que el EA funcione sin conexión obligatoria a la base de datos.
preview
Hibridación de algoritmos basados en poblaciones. Esquema secuencial y paralelo

Hibridación de algoritmos basados en poblaciones. Esquema secuencial y paralelo

En este artículo, nos sumergiremos en el mundo de la hibridación de algoritmos de optimización analizando tres tipos clave: la mezcla de estrategias y la hibridación secuencial y paralela. Asimismo, realizaremos una serie de experimentos combinando y probando los algoritmos de optimización correspondientes.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 10): Sólo datos reales para la repetición
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 10): Sólo datos reales para la repetición

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 10): Sólo datos reales para la repetición

Aquí veremos cómo se pueden utilizar datos más fiables (ticks negociados) en el sistema de repetición, sin tener que preocuparnos necesariamente de si están ajustados o no.
preview
Desarrollo de un sistema de repetición (Parte 51): Esto complica las cosas (III)

Desarrollo de un sistema de repetición (Parte 51): Esto complica las cosas (III)

En este artículo comprenderás una de las cosas más complejas que existen en la programación MQL5: la forma correcta de obtener el ID del gráfico y por qué a veces los objetos no se trazan en él. El contenido expuesto aquí tiene como objetivo, pura y simplemente, ser didáctico. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
preview
Introducción a MQL5 (Parte 9): Comprensión y uso de objetos en MQL5

Introducción a MQL5 (Parte 9): Comprensión y uso de objetos en MQL5

Aprenda a crear y personalizar objetos gráficos en MQL5 utilizando datos actuales e históricos. Esta guía basada en proyectos le ayuda a visualizar operaciones y aplicar conceptos MQL5 de manera práctica, lo que facilita la creación de herramientas adaptadas a sus necesidades comerciales.
preview
Algoritmos de optimización de la población: Algoritmo híbrido de optimización de forrajeo bacteriano con algoritmo genético (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)

Algoritmos de optimización de la población: Algoritmo híbrido de optimización de forrajeo bacteriano con algoritmo genético (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)

Este artículo presenta un nuevo enfoque para resolver problemas de optimización combinando las ideas de los algoritmos de optimización de forrajeo bacteriano (BFO) y las técnicas utilizadas en el algoritmo genético (GA) en un algoritmo híbrido BFO-GA. Dicha técnica utiliza enjambres bacterianos para buscar una solución óptima de manera global y operadores genéticos para refinar los óptimos locales. A diferencia del BFO original, ahora las bacterias pueden mutar y heredar genes.
preview
Algoritmos de optimización de la población: Algoritmo Boids, o algoritmo de comportamiento de bandada (Algoritmo Boids, Boids)

Algoritmos de optimización de la población: Algoritmo Boids, o algoritmo de comportamiento de bandada (Algoritmo Boids, Boids)

En este artículo, realizamos un estudio del algoritmo Boids, que se basa en ejemplos únicos del comportamiento de enjambre o bandada de animales. El algoritmo Boids, a su vez, ha servido de base para la creación de toda una clase de algoritmos agrupados bajo el nombre de "inteligencia de enjambre".
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 25): Preparación para la próxima etapa

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 25): Preparación para la próxima etapa

En este artículo, concluimos la primera fase del desarrollo del sistema de repetición y simulador. Con este hito, afirmo, estimado lector, que el sistema ha alcanzado un nivel avanzado, abriendo camino para la incorporación de nuevas funcionalidades. El objetivo es enriquecer aún más el sistema, convirtiéndolo en una herramienta poderosa para estudios y para el desarrollo de análisis de mercado.
preview
Desarrollamos un asesor experto multidivisa (Parte 7): Selección de grupos considerando el periodo forward

Desarrollamos un asesor experto multidivisa (Parte 7): Selección de grupos considerando el periodo forward

Anteriormente hemos evaluado la selección de un grupo de instancias de estrategias comerciales para mejorar el rendimiento cuando trabajan juntas solo durante el mismo periodo de tiempo en el que se han optimizado las instancias individuales. Veamos qué ocurre en el periodo forward.
preview
Desarrollo de un sistema de repetición (Parte 27): Proyecto Expert Advisor — Clase C_Mouse (I)

Desarrollo de un sistema de repetición (Parte 27): Proyecto Expert Advisor — Clase C_Mouse (I)

En este artículo, daremos vida a la clase C_Mouse. Está diseñada para permitir programar al más alto nivel posible. Sin embargo, hablar de programar a niveles altos o bajos no está relacionado con incluir palabrotas o jerga en el código. Todo lo contrario. Cuando mencionamos programación de alto o bajo nivel, nos referimos a lo fácil o difícil que es para otro programador entender el código.
preview
Algoritmos de optimización de la población: Objetos artificiales de búsqueda multisocial (artificial Multi-Social search Objects, MSO)

Algoritmos de optimización de la población: Objetos artificiales de búsqueda multisocial (artificial Multi-Social search Objects, MSO)

Continuación del artículo anterior como desarrollo de la idea de grupos sociales. El nuevo artículo investiga la evolución de los grupos sociales mediante algoritmos de reubicación y memoria. Los resultados ayudarán a comprender la evolución de los sistemas sociales y a aplicarlos a la optimización y la búsqueda de soluciones.
preview
Desarrollo de un sistema de repetición (Parte 29): Proyecto Expert Advisor — Clase C_Mouse (III)

Desarrollo de un sistema de repetición (Parte 29): Proyecto Expert Advisor — Clase C_Mouse (III)

Ahora que hemos mejorado la clase C_Mouse, podemos concentrarnos en crear una clase destinada a establecer una base totalmente nueva de estudios. Como mencioné al inicio del artículo, no utilizaremos herencia o polimorfismo para crear esta nueva clase. En cambio, vamos a modificar, o mejor, agregar nuevos objetos a la línea de precio. Esto es lo que haremos en este primer momento, y en el próximo artículo, mostraré cómo cambiar los estudios. Pero, realizaremos esto sin cambiar el código de la clase C_Mouse. Reconozco que, en la práctica, esto sería más fácilmente logrado mediante herencia o polimorfismo. No obstante, existen otras técnicas para alcanzar el mismo resultado.
preview
Desarrollamos un asesor experto multidivisa (Parte 16): Efecto de diferentes historias de cotizaciones en los resultados de las pruebas

Desarrollamos un asesor experto multidivisa (Parte 16): Efecto de diferentes historias de cotizaciones en los resultados de las pruebas

El asesor experto que estamos desarrollando debería mostrar buenos resultados al negociar con diferentes brókeres. Pero hasta ahora hemos usado las cotizaciones de la cuenta demo de MetaQuotes para las pruebas. Veamos si nuestro asesor experto está listo para trabajar en una cuenta comercial con cotizaciones diferentes a las utilizadas durante las pruebas y la optimización.
preview
Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Pruebas y resultados

Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Pruebas y resultados

En este artículo, continuaremos analizando el algoritmo de colmena artificial ABHA profundizando en la codificación y observando los métodos restantes. Recordemos que cada abeja en el modelo está representada como un agente individual cuyo comportamiento dependerá de información interna y externa, así como del estado motivacional. Probaremos el algoritmo con varias funciones y resumiremos los resultados presentándolos en una tabla de calificación.