Artículos sobre simulación de estrategias en el lenguaje MQL5

icon

¿Cómo podemos desarrollar, escribir y probar una estrategia comercial, cómo podemos encontrar los parámetros óptimos del sistema y cómo podemos analizar los resultados obtenidos? La plataforma MetaTrader ofrece a los desarrolladores de robots comerciales un abanico de posibilidades para una comprobación rápida y precisa de las ideas comerciales.  Lea estos artículos para llegar a saber cómo probar los robots multidivisas y usar las posibilidades de MQL5 Cloud Network para la optimización.

A los desarrolladores de los sistemas automáticos de trading les recomendamos empezar a estudiar a partir de los fundamentos de la simulación y los algoritmos de generación de ticks en el Probador de Estrategias.

Nuevo artículo
últimas | mejores
Probando las características y los límites de MetaTrader 4
Probando las características y los límites de MetaTrader 4

Probando las características y los límites de MetaTrader 4

Este artículo expone algunos detalles sobre las características y los límites del Probador de Estrategias de MetaTrader 4.
preview
Estrategia de Bill Williams con y sin otros indicadores y predicciones

Estrategia de Bill Williams con y sin otros indicadores y predicciones

En este artículo, analizaremos una de las famosas estrategias de Bill Williams, la analizaremos e intentaremos mejorarla con otros indicadores y predicciones.
preview
Algoritmos de optimización de la población: Optimización de colonias de hormigas (ACO)

Algoritmos de optimización de la población: Optimización de colonias de hormigas (ACO)

En esta ocasión, analizaremos el algoritmo de optimización de colonias de hormigas (ACO). El algoritmo es bastante interesante y ambiguo al mismo tiempo. Intentaremos crear un nuevo tipo de ACO.
preview
Experimentos con redes neuronales (Parte 2): Optimización inteligente de una red neuronal

Experimentos con redes neuronales (Parte 2): Optimización inteligente de una red neuronal

Las redes neuronales lo son todo. Vamos a comprobar en la práctica si esto es así. MetaTrader 5 como herramienta autosuficiente para el uso de redes neuronales en el trading. Una explicación sencilla.
preview
Algoritmos de optimización de la población: Método de Nelder-Mead

Algoritmos de optimización de la población: Método de Nelder-Mead

En el artículo de hoy, le presentamos un estudio completo del método de Nelder-Mead, en el que se explica cómo el símplex (el espacio de parámetros de la función) se modifica y reordena en cada iteración para alcanzar la solución óptima; asimismo, describiremos una forma de mejorar este método.
preview
Aprendizaje automático y Data Science (Parte 21): Desbloqueando las redes neuronales: desmitificando los algoritmos de optimización

Aprendizaje automático y Data Science (Parte 21): Desbloqueando las redes neuronales: desmitificando los algoritmos de optimización

Sumérjase en el corazón de las redes neuronales mientras desmitificamos los algoritmos de optimización utilizados dentro de la red neuronal. En este artículo, descubra las técnicas clave que liberan todo el potencial de las redes neuronales, impulsando sus modelos a nuevas cotas de precisión y eficacia.
preview
La magia de los intervalos comerciales de tiempo con Frames Analyzer

La magia de los intervalos comerciales de tiempo con Frames Analyzer

¿Qué es Frames Analyzer? Se trata de un complemento para que cualquier experto comercial analice marcos de optimización durante la optimización de parámetros en el simulador de estrategias, así como fuera del simulador mediante la lectura de un archivo MQD o una base de datos creada inmediatamente después de la optimización de parámetros. El usuario podrá compartir estos resultados de optimización con otros tráders que tengan la herramienta Frames Analyzer para analizarlos juntos.
preview
Experimentos con redes neuronales (Parte 1): Recordando la geometría

Experimentos con redes neuronales (Parte 1): Recordando la geometría

Las redes neuronales lo son todo. En este artículo, usaremos la experimentación y enfoques no estándar para desarrollar un sistema comercial rentable y comprobaremos si las redes neuronales pueden ser de alguna ayuda para los comerciantes.
preview
Redes neuronales de propagación inversa del error en matrices MQL5

Redes neuronales de propagación inversa del error en matrices MQL5

El artículo describe la teoría y la práctica de la aplicación del algoritmo de propagación inversa del error en MQL5 con la ayuda de matrices. Asimismo, incluye clases y ejemplos preparados del script, el indicador y el asesor.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 06): Primeras mejoras (I)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 06): Primeras mejoras (I)

En este artículo empezaremos a estabilizar todo el sistema, porque sin eso corremos el riesgo de no poder cumplir los siguientes pasos.
preview
Optimización móvil continua (Parte 8): Mejorando el programa y corrigiendo los errores encontrados

Optimización móvil continua (Parte 8): Mejorando el programa y corrigiendo los errores encontrados

A petición de los usuarios y lectores del presente ciclo de artículos, el programa ha sido modificado, y ahora podemos decir que el este artículo contiene la nueva versión del autooptimizador. Asimismo, hemos introducido en el autooptimizador tanto las mejoras solicitadas, como algunas nuevas cuya idea surgió durante la corrección del programa.
Representación gráfica de las pruebas: Mejora de la funcionalidad
Representación gráfica de las pruebas: Mejora de la funcionalidad

Representación gráfica de las pruebas: Mejora de la funcionalidad

Este artículo describe el programa que permite que las pruebas de estrategias sean muy similares al trading real.
preview
Comprensión y uso eficaz del simulador de estrategias MQL5

Comprensión y uso eficaz del simulador de estrategias MQL5

Para los desarrolladores de MQL5 resulta imperativo dominar herramientas importantes y valiosas. Una de esas herramientas es el simulador de estrategias. El presente artículo es una guía práctica para utilizar el simulador de estrategias MQL5.
preview
Aproximación por fuerza bruta a la búsqueda de patrones (Parte II): Nuevos horizontes

Aproximación por fuerza bruta a la búsqueda de patrones (Parte II): Nuevos horizontes

Este artículo prosigue con el tema de la fuerza bruta, ofreciendo al algoritmo de nuestro programa nuevas posibilidades para el análisis de mercado, y acelerando la velocidad de análisis y la calidad de los resultados finales, lo cual brinda un punto de vista de máxima calidad sobre los patrones globales en el marco de este enfoque.
preview
Optimización paralela con el método de enjambre de partículas (Particle Swarm Optimization)

Optimización paralela con el método de enjambre de partículas (Particle Swarm Optimization)

El presente artículo describimos un modo de optimización rápida usando el método de enjambre de partículas, y presentamos una implementación en MQL lista para utilizar tanto en el modo de flujo único dentro de un EA, como en el modo paralelo de flujo múltiples como un complemento ejecutado en los agentes locales del simulador.
preview
Estrategia comercial con el indicador de mejora de reconocimiento de velas Doji

Estrategia comercial con el indicador de mejora de reconocimiento de velas Doji

El indicador sobre metabarras ha detectado más velas que el clásico. Veamos si aporta un beneficio real en el trading automatizado.
preview
Teoría de categorías en MQL5 (Parte 8): Monoides

Teoría de categorías en MQL5 (Parte 8): Monoides

El presente artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5. Aquí presentamos los monoides como un dominio (conjunto) que distingue la teoría de categorías de otros métodos de clasificación de datos al incluir reglas y un elemento de identidad.
preview
Algoritmos de optimización de la población: Búsqueda de bancos de peces (Fish School Search — FSS)

Algoritmos de optimización de la población: Búsqueda de bancos de peces (Fish School Search — FSS)

La búsqueda de bancos de peces (FSS) es un nuevo algoritmo de optimización moderno inspirado en el comportamiento de los peces en un banco, la mayoría de los cuales, hasta el 80%, nadan en una comunidad organizada de parientes. Se ha demostrado que las asociaciones de peces juegan un papel importante a la hora de buscar alimento y protegerse contra los depredadores de forma eficiente.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 01): Primeros experimentos (I)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 01): Primeros experimentos (I)

¿Qué te parece crear un sistema para estudiar el mercado cuando está cerrado o simular situaciones de mercado? Aquí iniciaremos una nueva secuencia de artículos para tratar este tema.
preview
Algoritmos de optimización de la población: Algoritmo de siembra y crecimiento de árboles (Saplings Sowing and Growing up — SSG)

Algoritmos de optimización de la población: Algoritmo de siembra y crecimiento de árboles (Saplings Sowing and Growing up — SSG)

El algoritmo de siembra y crecimiento de árboles (SSG) está inspirado en uno de los organismos más resistentes del planeta, que es un ejemplo notable de supervivencia en una amplia variedad de condiciones.
preview
Algoritmos de optimización de la población: Algoritmo de recocido simulado (Simulated Annealing, SA). Parte I

Algoritmos de optimización de la población: Algoritmo de recocido simulado (Simulated Annealing, SA). Parte I

El algoritmo de recocido simulado es una metaheurística inspirada en el proceso de recocido de los metales. En nuestro artículo, realizaremos un análisis exhaustivo del algoritmo y mostraremos cómo muchas percepciones comunes y mitos que rodean a este método de optimización (el más popular y conocido) pueden ser incorrectos e incompletos. Anuncio de la segunda parte del artículo: "¡Conozca el algoritmo de recocido Isotrópico Simulado (Simulated Isotropic Annealing, SIA) del propio autor!"
preview
Algoritmos de optimización de la población: Algoritmo de optimización de la dinámica espiral (Spiral Dynamics Optimization, SDO)

Algoritmos de optimización de la población: Algoritmo de optimización de la dinámica espiral (Spiral Dynamics Optimization, SDO)

Este artículo presenta un algoritmo de optimización basado en los patrones de las trayectorias en espiral en la naturaleza, como las conchas de los moluscos: el algoritmo de optimización de la dinámica espiral o SDO. El algoritmo propuesto ha sido repensado y modificado a fondo por el autor: en el artículo analizaremos por qué estos cambios han sido necesarios.
preview
Algoritmos de optimización de la población: Algoritmo genético binario (Binary Genetic Algorithm, BGA). Parte I

Algoritmos de optimización de la población: Algoritmo genético binario (Binary Genetic Algorithm, BGA). Parte I

En este artículo, analizaremos varios métodos utilizados en algoritmos genéticos binarios y otros algoritmos poblacionales. Asimismo, repasaremos los principales componentes del algoritmo, como la selección, el cruce y la mutación, así como su impacto en el proceso de optimización. Además, estudiaremos las formas de presentar la información y su repercusión en los resultados de la optimización.
preview
Desarrollo de un sistema de repetición (Parte 32): Sistema de órdenes (I)

Desarrollo de un sistema de repetición (Parte 32): Sistema de órdenes (I)

De todas las cosas desarrolladas hasta ahora, esta, como seguramente también notarás y con el tiempo estarás de acuerdo, es la más desafiante de todas. Lo que tenemos que hacer es algo simple: hacer que nuestro sistema simule lo que hace un servidor comercial en la práctica. Esto de tener que implementar una forma de simular exactamente lo que haría el servidor comercial parece simple. Al menos en palabras. Pero necesitamos hacer esto de manera que, para el usuario del sistema de repetición/simulación, todo suceda de la manera más invisible o transparente posible.
preview
Algoritmos de optimización de la población: Enjambre de partículas (PSO)

Algoritmos de optimización de la población: Enjambre de partículas (PSO)

En este artículo, analizaremos el popular algoritmo de optimización de la población «Enjambre de partículas» (PSO — particle swarm optimisation). Con anterioridad, ya discutimos características tan importantes de los algoritmos de optimización como la convergencia, la tasa de convergencia, la estabilidad, la escalabilidad, y también desarrollamos un banco de pruebas y analizamos el algoritmo RNG más simple.
preview
Comprobando la informatividad de distintos tipos de medias móviles

Comprobando la informatividad de distintos tipos de medias móviles

Todos conocemos la importancia de la media móvil para muchos tráders. Existen diferentes tipos de medias móviles que pueden resultar útiles en el trading. Vamos a echarles un vistazo y a hacer una sencilla comparación para ver cuál puede dar mejores resultados.
preview
Características del Wizard MQL5 que debe conocer (Parte 3): Entropía de Shannon

Características del Wizard MQL5 que debe conocer (Parte 3): Entropía de Shannon

El tráder moderno está casi siempre a la búsqueda de nuevas ideas, probando constantemente nuevas estrategias, modificándolas y descartando las que han fracasado. En esta serie de artículos, intentaré demostrar que el Wizard MQL5 es un verdadero apoyo para el tráder.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 20): FOREX (I)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 20): FOREX (I)

La intención inicial de este artículo no será cubrir todas las características de FOREX, sino más bien adaptar el sistema de manera que puedas realizar al menos una repetición del mercado. La simulación quedará para otro momento. Sin embargo, en caso de que no tengas los ticks y solo tengas las barras, con un poco de trabajo, puedes simular posibles transacciones que podrían haber ocurrido en FOREX. Esto será hasta que te muestre cómo adaptar el simulador. El hecho de intentar trabajar con datos provenientes de FOREX dentro del sistema sin modificarlo conlleva errores de rango.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 16): Un nuevo sistema de clases

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 16): Un nuevo sistema de clases

Precisamos organizarnos mejor. El código está creciendo y si no lo organizamos ahora, será imposible hacerlo después. Así que vamos a dividir para conquistar. El hecho de que MQL5 nos permita usar clases nos ayudará en esta tarea. Pero para hacerlo, es necesario que tengas algún conocimiento sobre algunas cosas relacionadas con las clases. Y tal vez lo que más confunde a los aspirantes y principiantes es la herencia. Así que en este artículo, te mostraré de manera práctica y sencilla cómo usar estos mecanismos.
preview
Desarrollo de un robot en Python y MQL5 (Parte 2): Selección, creación y entrenamiento de modelos, simulador personalizado en Python

Desarrollo de un robot en Python y MQL5 (Parte 2): Selección, creación y entrenamiento de modelos, simulador personalizado en Python

Hoy vamos a continuar con la serie de artículos sobre la creación de un robot comercial en Python y MQL5. En el presente artículo, resolveremos el problema de la selección y el entrenamiento de modelos, la prueba de los mismos, la aplicación de la validación cruzada, la búsqueda en cuadrícula y el problema del ensamblaje de modelos.
preview
Python, ONNX y MetaTrader 5: Creamos un modelo RandomForest con preprocesamiento de datos RobustScaler y PolynomialFeatures

Python, ONNX y MetaTrader 5: Creamos un modelo RandomForest con preprocesamiento de datos RobustScaler y PolynomialFeatures

En este artículo, crearemos un modelo de bosque aleatorio en Python, entrenaremos el modelo y lo guardaremos como un pipeline ONNX con preprocesamiento de datos. Además, usaremos el modelo en el terminal MetaTrader 5.
preview
Algoritmos de optimización de la población: Algoritmo de gotas de agua inteligentes (Intelligent Water Drops, IWD)

Algoritmos de optimización de la población: Algoritmo de gotas de agua inteligentes (Intelligent Water Drops, IWD)

El artículo analiza un interesante algoritmo, las gotas de agua inteligentes, IWD, presente en la naturaleza inanimada, que simula el proceso de formación del cauce de un río. Las ideas de este algoritmo han permitido mejorar significativamente el anterior líder de la clasificación, el SDS, y el nuevo líder (SDSm modificado); como de costumbre, se puede encontrar en el archivo del artículo.
preview
Optimización automatizada de parámetros para estrategias de negociación con Python y MQL5

Optimización automatizada de parámetros para estrategias de negociación con Python y MQL5

Existen varios tipos de algoritmos para la autooptimización de estrategias y parámetros de negociación. Estos algoritmos se utilizan para mejorar automáticamente las estrategias de negociación basándose en datos históricos y actuales del mercado. En este artículo veremos uno de ellos con ejemplos en Python y MQL5.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 22): FOREX (III)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 22): FOREX (III)

Para aquellos que aún no han comprendido la diferencia entre el mercado de acciones y el mercado de divisas (forex), a pesar de que este ya es el tercer artículo en el que abordo esto, debo dejar claro que la gran diferencia es el hecho de que en forex no existe, o mejor dicho, no se nos informa acerca de algunas cosas que realmente ocurrieron en la negociación.
Algoritmos de optimización de la población
Algoritmos de optimización de la población

Algoritmos de optimización de la población

Artículo de introducción a los algoritmos de optimización (AO). Clasificación. En el artículo, intentaremos crear un banco de pruebas (un conjunto de funciones) que servirá en el futuro para comparar los AO entre sí, e incluso, quizás, para identificar el algoritmo más universal de todos los ampliamente conocidos.
preview
Algoritmos de optimización de la población: Algoritmo del mono (Monkey algorithm, MA)

Algoritmos de optimización de la población: Algoritmo del mono (Monkey algorithm, MA)

En este artículo analizaremos el algoritmo de optimización "Algoritmo del Mono" (MA). La capacidad de estos ágiles animales para superar obstáculos complicados y alcanzar las copas de los árboles más inaccesibles fue la base de la idea del algoritmo MA.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 02): Primeros experimentos (II)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 02): Primeros experimentos (II)

Intentemos esta vez un enfoque diferente para lograr el objetivo de 1 minuto. Sin embargo, esta tarea no es tan sencilla como muchos piensan.
preview
Características del Wizard MQL5 que debe conocer (Parte 1): Análisis de regresión

Características del Wizard MQL5 que debe conocer (Parte 1): Análisis de regresión

De manera consciente o inconsciente, el tráder moderno está casi siempre en busca de nuevas ideas, probando constantemente nuevas estrategias, modificándolas y descartando las que han fracasado. Este proceso de investigación requiere mucho tiempo y se ve acompañado por muchos errores. En esta serie de artículos, intentaré demostrar que el Wizard MQL5 es un verdadero apoyo para el tráder. Gracias al Wizard, el tráder podrá ahorrar tiempo a la hora de poner en práctica sus ideas. Asimismo, podrá reducir la probabilidad de que surjan errores por duplicación de código. En lugar de perder el tiempo con el código, los tráders tendrán la posibilidad de poner en práctica su filosofía comercial.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 8): Desarrollo de un asesor experto (II)

Creación de un modelo de restricción de tendencia de velas (Parte 8): Desarrollo de un asesor experto (II)

Piense en un asesor experto independiente. Anteriormente, analizamos un Asesor Experto basado en indicadores que también se asoció con un script independiente para dibujar la geometría de riesgo y recompensa. Hoy discutiremos la arquitectura de un Asesor Experto MQL5, que integra todas las características en un solo programa.
preview
De principiante a experto: El viaje esencial a través del trading con MQL5

De principiante a experto: El viaje esencial a través del trading con MQL5

¡Libera tu potencial! Estás rodeado de oportunidades. Descubra 3 secretos principales para iniciar su viaje hacia MQL5 o llevarlo al siguiente nivel. Vamos a hablar de consejos y trucos tanto para principiantes como para profesionales.