Artículos sobre automatización de sistemas comerciales en el lenguaje MQL5

icon

Lea los artículos sobre los sistemas de trading basados en las ideas muy variadas. Usted sabrá cómo usar los métodos estadísticos y los patrones en los gráficos de velas japonesas, cómo filtrar las señales y para qué sirven los indicadores semafóricos.

A través del Asistente MQL5 Usted aprenderá a crear los robots sin acudir a la programación para evaluar rápidamente las ideas comerciales, así como sabrá qué es lo que representan los algoritmos genéticos.

Nuevo artículo
últimas | mejores
Biblioteca para el desarrollo rápido y sencillo de programas para MetaTrader (Parte IX): Compatibilidad con MQL4 - Preparando los datos
Biblioteca para el desarrollo rápido y sencillo de programas para MetaTrader (Parte IX): Compatibilidad con MQL4 - Preparando los datos

Biblioteca para el desarrollo rápido y sencillo de programas para MetaTrader (Parte IX): Compatibilidad con MQL4 - Preparando los datos

En artículos anteriores, comenzamos a crear una gran biblioteca multiplataforma, cuyo cometido es simplificar la escritura de programas para las plataformas MetaTrader 5 y MetaTrader 4. En la novena parte, hemos creado una clase que monitoreará los eventos de modificación de las órdenes y posiciones de mercado. En el presente artículo, comenzaremos a desarrollar la biblioteca para hacerla totalmente compatible con MQL4.
preview
Cómo construir un EA que opere automáticamente (Parte 06): Tipos de cuentas (I)

Cómo construir un EA que opere automáticamente (Parte 06): Tipos de cuentas (I)

Aprenda a crear un EA que opere automáticamente de forma sencilla y segura. Hasta ahora nuestro EA puede funcionar en cualquier tipo de situación, pero aún no está listo para ser automatizado, por lo que tenemos que hacer algunas cosas.
preview
Gestor de riesgos para el trading algorítmico

Gestor de riesgos para el trading algorítmico

Los objetivos de este artículo son: demostrar por qué el uso del gestor de riesgos es algo imprescindible, adaptar los principios del riesgo controlado en el trading algorítmico en una clase aparte, de modo que todo el mundo pueda comprobar de forma independiente la eficacia del enfoque de racionamiento del riesgo en el trading intradía y la inversión en los mercados financieros. En este artículo, detallaremos la escritura de una clase de gestor de riesgos para el trading algorítmico como continuación del artículo anterior sobre la escritura de un gestor de riesgos para el trading manual.
preview
Aprendizaje automático y Data Science (Parte 28): Predicción de múltiples futuros para el EURUSD mediante IA

Aprendizaje automático y Data Science (Parte 28): Predicción de múltiples futuros para el EURUSD mediante IA

Es una práctica común que muchos modelos de Inteligencia Artificial predigan un único valor futuro. Sin embargo, en este artículo profundizaremos en la poderosa técnica de utilizar modelos de aprendizaje automático para predecir múltiples valores futuros. Este enfoque, conocido como pronóstico de múltiples pasos, nos permite predecir no sólo el precio de cierre de mañana, sino también el de pasado mañana y más allá. Al dominar la previsión en varios pasos, los operadores y los científicos de datos pueden obtener conocimientos más profundos y tomar decisiones más informadas, mejorando significativamente sus capacidades de predicción y planificación estratégica.
preview
Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 4): Media móvil triangular - Señales del indicador

Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 4): Media móvil triangular - Señales del indicador

Por asesor multidivisa en este artículo entendemos un asesor, o un robot comercial que puede operar (abrir/cerrar órdenes, gestionar órdenes como Trailing Stop Loss y Trailing Profit) con más de un par de símbolos desde un gráfico. Esta vez usaremos un solo indicador, a saber, la media móvil triangular en uno o varios marcos temporales.
preview
Redes neuronales: así de sencillo (Parte 80): Modelo generativo y adversarial del Transformador de grafos (GTGAN)

Redes neuronales: así de sencillo (Parte 80): Modelo generativo y adversarial del Transformador de grafos (GTGAN)

En este artículo, le presentamos el algoritmo GTGAN, introducido en enero de 2024 para resolver problemas complejos de disposición arquitectónica con restricciones gráficas.
preview
Estrategia comercial con el indicador de mejora de reconocimiento de velas Doji

Estrategia comercial con el indicador de mejora de reconocimiento de velas Doji

El indicador sobre metabarras ha detectado más velas que el clásico. Veamos si aporta un beneficio real en el trading automatizado.
preview
Patrones de diseño en MQL5 (Parte 2): Patrones estructurales

Patrones de diseño en MQL5 (Parte 2): Patrones estructurales

En este artículo, seguiremos estudiando los patrones de diseño que permiten a los desarrolladores crear aplicaciones extensibles y fiables no solo en MQL5, sino también en otros lenguajes de programación. Esta vez hablaremos de un tipo diferente: los patrones estructurales. Asimismo, aprenderemos a diseñar sistemas usando las clases disponibles para formar estructuras mayores.
preview
Ejemplo de optimización estocástica y control óptimo

Ejemplo de optimización estocástica y control óptimo

Este Asesor Experto, llamado SMOC, que significa Stochastic Model Optimal Control (Modelo Estocástico de Control Óptimo), es un ejemplo sencillo de un avanzado sistema algorítmico de trading para MetaTrader 5. Utiliza una combinación de indicadores técnicos, control predictivo de modelos y gestión dinámica de riesgos para tomar decisiones comerciales. El EA incorpora parámetros adaptativos, dimensionamiento de posiciones basado en la volatilidad y análisis de tendencias para optimizar su rendimiento en diferentes condiciones de mercado.
preview
Gestión de Riesgo (Parte 1): Fundamentos para Construir una Clase de Gestión de Riesgo

Gestión de Riesgo (Parte 1): Fundamentos para Construir una Clase de Gestión de Riesgo

En este artículo exploraremos los fundamentos de la gestión de riesgo en el trading, y aprenderemos a crear nuestras primeras funciones para obtener el lote adecuado para una operación y el stop loss. Además, profundizaremos en cómo funcionan estas funciones, explicando cada paso detalladamente. Nuestro objetivo es proporcionar una comprensión clara de cómo aplicar estos conceptos en el trading automatizado. Al final, pondremos todo en práctica creando un script simple con el archivo de inclusión que hemos diseñado.
preview
Patrones de diseño en MQL5 (Parte I): Patrones de creación (Creational Patterns)

Patrones de diseño en MQL5 (Parte I): Patrones de creación (Creational Patterns)

Existen métodos que pueden usarse para resolver problemas típicos. Una vez entendemos cómo utilizar estas técnicas una vez, podemos escribir programas de forma eficaz y aplicar el concepto DRY (No te repitas, en inglés, don't repeat yourself). En este contexto, resultan muy útiles los patrones de diseño que pueden aportar soluciones a problemas bien descritos y recurrentes.
preview
Desarrollando un EA comercial desde cero (Parte 11): Sistema de órdenes cruzadas

Desarrollando un EA comercial desde cero (Parte 11): Sistema de órdenes cruzadas

Creación de un sistema de órdenes cruzadas. Hay una clase de activos que les hace la vida muy difícil a los comerciantes, estos son los activos de contratos futuros, y ¿por qué le hacen la vida difícil al comerciante?
preview
Redes neuronales: así de sencillo (Parte 32): Aprendizaje Q distribuido

Redes neuronales: así de sencillo (Parte 32): Aprendizaje Q distribuido

En uno de los artículos de esta serie, nos familiarizamos con el método de aprendizaje Q. Este método promedia las recompensas de cada acción. En 2017 se presentaron dos trabajos que muestran un mayor éxito al estudiar la función de distribución de recompensas. Vamos a analizar la posibilidad de utilizar esta tecnología para resolver nuestros problemas.
preview
Desarrollo de un EA comercial desde cero (Parte 28): Rumbo al futuro (III)

Desarrollo de un EA comercial desde cero (Parte 28): Rumbo al futuro (III)

Nuestro sistema de órdenes todavía falla en hacer una cosa, pero FINALMENTE lo resolveremos...
preview
Análisis de múltiples símbolos con Python y MQL5 (Parte I): Fabricantes de circuitos integrados del NASDAQ

Análisis de múltiples símbolos con Python y MQL5 (Parte I): Fabricantes de circuitos integrados del NASDAQ

Acompáñenos mientras debatimos cómo puede utilizar la IA para optimizar el tamaño de sus posiciones y las cantidades de sus órdenes para maximizar la rentabilidad de su cartera. Mostraremos cómo identificar algorítmicamente una cartera óptima y adaptar su cartera a sus expectativas de rentabilidad o niveles de tolerancia al riesgo. En este debate, utilizaremos la biblioteca SciPy y el lenguaje MQL5 para crear una cartera óptima y diversificada utilizando todos los datos de que disponemos.
Aprendiendo a diseñar un sistema comercial basado en Momentum
Aprendiendo a diseñar un sistema comercial basado en Momentum

Aprendiendo a diseñar un sistema comercial basado en Momentum

En el artículo anterior, mencionamos la importancia de detectar las tendencias, es decir, de determinar la dirección del movimiento del precio. En este artículo, hablaremos sobre otro concepto importante en el trading, que también existe en forma de indicador: el impulso del precio o el indicador Momentum. Asimismo, desarrollaremos nuestro propio sistema comercial basado en este indicador.
preview
Aprendiendo a diseñar un sistema de trading con Relative Vigor Index

Aprendiendo a diseñar un sistema de trading con Relative Vigor Index

Bienvenidos a un nuevo artículo de nuestra serie dedicada a la creación de sistemas comerciales basados en indicadores técnicos populares. En esta ocasión, analizaremos el Índice de Vigor Relativo (Relative Vigor Index, RVI).
Enfoque ideal sobre el desarrollo y el análisis de sistemas comerciales
Enfoque ideal sobre el desarrollo y el análisis de sistemas comerciales

Enfoque ideal sobre el desarrollo y el análisis de sistemas comerciales

En el presente artículo, trataremos de mostrar con qué criterio elegir un sistema o señal para invertir nuestro dinero, además de cuál es el mejor enfoque para desarrollar sistemas comerciales y por qué este tema es tan importante en el comercio en fórex.
preview
Automatización de estrategias comerciales con la estrategia de tendencia Parabolic SAR en MQL5: Creación de un asesor experto eficaz

Automatización de estrategias comerciales con la estrategia de tendencia Parabolic SAR en MQL5: Creación de un asesor experto eficaz

En este artículo, automatizaremos las estrategias comerciales con la estrategia Parabolic SAR en MQL5: Creación de un asesor experto eficaz. El EA realizará operaciones basadas en las tendencias identificadas por el indicador Parabolic SAR.
Biblioteca para el desarrollo rápido y sencillo de programas para MetaTrader (Parte VIII): Eventos de modificación de órdenes y posiciones
Biblioteca para el desarrollo rápido y sencillo de programas para MetaTrader (Parte VIII): Eventos de modificación de órdenes y posiciones

Biblioteca para el desarrollo rápido y sencillo de programas para MetaTrader (Parte VIII): Eventos de modificación de órdenes y posiciones

En artículos anteriores, comenzamos a crear una gran biblioteca multiplataforma, cuyo cometido es simplificar la escritura de programas para las plataformas MetaTrader 5 y MetaTrader 4. En el séptimo artículo, añadimos el seguimiento de los eventos de activación de órdenes StopLimit y preparamos la funcionalidad para monitorear el resto de eventos que tienen lugar con las órdenes y posiciones. En el presente artículo, vamos a crear una clase que monitoreará los eventos de modificación de las órdenes y posiciones de mercado.
preview
Cómo construir un EA que opere automáticamente (Parte 14): Automatización (VI)

Cómo construir un EA que opere automáticamente (Parte 14): Automatización (VI)

Aquí pondremos realmente en práctica todos los conocimientos de esta serie. Finalmente construiremos un sistema 100% automático y funcional. Pero para hacer esto, tendrás que aprender una última cosa.
preview
Redes neuronales: así de sencillo (Parte 49): Soft Actor-Critic

Redes neuronales: así de sencillo (Parte 49): Soft Actor-Critic

Continuamos nuestro análisis de los algoritmos de aprendizaje por refuerzo en problemas de espacio continuo de acciones. En este artículo, le propongo introducir el algoritmo Soft Astog-Critic (SAC). La principal ventaja del SAC es su capacidad para encontrar políticas óptimas que no solo maximicen la recompensa esperada, sino que también tengan la máxima entropía (diversidad) de acciones.
preview
Aprendizaje automático y data science (Parte 04): Predicción de una caída bursátil

Aprendizaje automático y data science (Parte 04): Predicción de una caída bursátil

En este artículo, intentaremos usar nuestro modelo logístico para predecir una caída del mercado de valores según las principales acciones de la economía estadounidense: NETFLIX y APPLE. Analizaremos estas acciones, y también usaremos la información sobre las anteriores caídas del mercado en 2019 y 2020. Veamos cómo funcionará nuestro modelo en las poco favorables condiciones actuales.
preview
Desarrollando un EA comercial desde cero (Parte 22): Un nuevo sistema de órdenes (V)

Desarrollando un EA comercial desde cero (Parte 22): Un nuevo sistema de órdenes (V)

Hoy seguiremos desarrollando el nuevo sistema de ordenes. No es nada fácil implementar un nuevo sistema, muchas veces nos encontramos con problemas que dificultan mucho el proceso, cuando suceden hay que parar y volver a analizar el rumbo que se está tomando.
preview
Redes neuronales: así de sencillo (Parte 20): Autocodificadores

Redes neuronales: así de sencillo (Parte 20): Autocodificadores

Continuamos analizando los algoritmos de aprendizaje no supervisado. El lector podría preguntarse sobre la relevancia de las publicaciones recientes en el tema de las redes neuronales. En este nuevo artículo, retomaremos el uso de las redes neuronales.
preview
Desarrollando un canal de Donchian personalizado con la ayuda de MQL5

Desarrollando un canal de Donchian personalizado con la ayuda de MQL5

Existen muchas herramientas técnicas que se pueden usar para visualizar los canales de precios. Una de esas herramientas es el canal de Donchian. En este artículo, aprenderemos cómo crear un canal de Donchian, y también a usarlo como indicador personalizado dentro de un asesor experto.
Otras clases en la biblioteca DoEasy (Parte 66): Clases de Colección de Señales MQL5.com
Otras clases en la biblioteca DoEasy (Parte 66): Clases de Colección de Señales MQL5.com

Otras clases en la biblioteca DoEasy (Parte 66): Clases de Colección de Señales MQL5.com

En este artículo, crearemos una clase de colección de señales del Servicio de señales de MQL5.com con funciones para gestionar las señales suscritas, y también modificaremos la clase del objeto de instantánea de la profundidad de mercado para mostrar el volumen total de la profundidad de mercado de compra y venta.
preview
Múltiples indicadores en un gráfico (Parte 05): Convirtamos el MetaTrader 5 en un sistema RAD (I)

Múltiples indicadores en un gráfico (Parte 05): Convirtamos el MetaTrader 5 en un sistema RAD (I)

A pesar de no saber programar, muchas personas son bastante creativas y tienen grandes ideas, pero la falta de conocimientos o de entendimiento sobre la programación les impide hacer algunas cosas. Aprenda a crear un Chart Trade, pero utilizando la propia plataforma MT5, como si fuera un IDE.
preview
Desarrollando un EA comercial desde cero (Parte 20): Un nuevo sistema de órdenes (III)

Desarrollando un EA comercial desde cero (Parte 20): Un nuevo sistema de órdenes (III)

Continuemos con la implantación del nuevo sistema de órdenes. La creación de este sistema es algo que exige un buen dominio de MQL5, así como entender cómo funciona en realidad la plataforma MetaTrader 5 y qué recursos nos proporciona.
preview
Creación de un modelo de restricción de tendencia de velas (Parte 9): Asesor Experto de múltiples estrategias (I)

Creación de un modelo de restricción de tendencia de velas (Parte 9): Asesor Experto de múltiples estrategias (I)

Hoy, exploraremos las posibilidades de incorporar múltiples estrategias en un Asesor Experto (Expert Advisor, EA) utilizando MQL5. Los asesores expertos ofrecen capacidades más amplias que solo indicadores y scripts, lo que permite enfoques comerciales más sofisticados que pueden adaptarse a las condiciones cambiantes del mercado. Encuentre más información en este artículo de discusión.
preview
Redes neuronales: así de sencillo (Parte 21): Autocodificadores variacionales (VAE)

Redes neuronales: así de sencillo (Parte 21): Autocodificadores variacionales (VAE)

En el anterior artículo, vimos el algoritmo del autocodificador. Como cualquier otro algoritmo, tiene ventajas y desventajas. En la implementación original, el autocodificador se encarga de dividir los objetos de la muestra de entrenamiento tanto como sea posible. Y en este artículo, en cambio, hablaremos de cómo solucionar algunas de sus deficiencias.
Uso de criptografía con aplicaciones externas
Uso de criptografía con aplicaciones externas

Uso de criptografía con aplicaciones externas

En el presente artículo, analizaremos la encriptación/desencriptación de objetos en MetaTrader y los programas externos para aclarar las condiciones en las que se obtendrán los mismos resultados con los mismos datos iniciales.
preview
Arbitraje estadístico con predicciones

Arbitraje estadístico con predicciones

Daremos un paseo por el arbitraje estadístico, buscaremos con Python símbolos de correlación y cointegración, haremos un indicador para el coeficiente de Pearson y haremos un EA para operar arbitraje estadístico con predicciones hechas con Python y modelos ONNX.
preview
Cómo construir un EA que opere automáticamente (Parte 05): Gatillos manuales (II)

Cómo construir un EA que opere automáticamente (Parte 05): Gatillos manuales (II)

Aprenda a crear un EA que opere automáticamente de forma sencilla y segura. Al final del artículo anterior, pensé que sería apropiado permitir el uso del EA de forma manual, al menos durante un tiempo.
preview
Redes neuronales: así de sencillo (Parte 16): Uso práctico de la clusterización

Redes neuronales: así de sencillo (Parte 16): Uso práctico de la clusterización

En el artículo anterior, creamos una clase para la clusterización de datos. En este artículo, queremos compartir con el lector diferentes opciones de uso de los resultados obtenidos para resolver problemas prácticos en el trading.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 45): Búferes de indicador de periodo múltiple
Trabajando con las series temporales en la biblioteca DoEasy (Parte 45): Búferes de indicador de periodo múltiple

Trabajando con las series temporales en la biblioteca DoEasy (Parte 45): Búferes de indicador de periodo múltiple

En el artículo, comenzaremos a mejorar los objetos de búfer de indicador y la clase de colección de búferes para trabajar en los modos de periodo y símbolo múltiples. Asimismo, analizaremos el funcionamiento de los objetos de búfer para obtener y mostrar los datos desde cualquier marco temporal en el gráfico actual del símbolo actual.
preview
Gradient boosting en el aprendizaje de máquinas transductivo y activo

Gradient boosting en el aprendizaje de máquinas transductivo y activo

En este artículo, el lector podrá familiarizarse con los métodos de aprendizaje automático activo basados en datos reales, descubriendo además cuáles son sus ventajas y desventajas. Puede que estos métodos terminen por ocupar un lugar en su arsenal de modelos de aprendizaje automático. El término transducción fue introducido por Vladímir Naúmovich Vápnik, el inventor de la máquina de vectores de soporte (SVM).
preview
Cómo integrar los conceptos de dinero inteligente (Smart Money Concepts, SMC) junto con el indicador RSI en un EA

Cómo integrar los conceptos de dinero inteligente (Smart Money Concepts, SMC) junto con el indicador RSI en un EA

Concepto de dinero inteligente (ruptura de estructura) junto con el indicador RSI para tomar decisiones comerciales automatizadas informadas basadas en la estructura del mercado.
preview
Redes neuronales: así de sencillo (Parte 83): Algoritmo de convertidor espacio-temporal de atención constante (Conformer)

Redes neuronales: así de sencillo (Parte 83): Algoritmo de convertidor espacio-temporal de atención constante (Conformer)

El algoritmo de Conformer que le mostraremos hoy se desarrolló para la previsión meteorológica, una esfera del saber que, por su constante variabilidad, puede compararse con los mercados financieros. El Conformer es un método completo que combina las ventajas de los modelos de atención y las ecuaciones diferenciales ordinarias.
preview
Redes neuronales: así de sencillo (Parte 19): Reglas asociativas usando MQL5

Redes neuronales: así de sencillo (Parte 19): Reglas asociativas usando MQL5

Continuamos con el tema de la búsqueda de reglas asociativas. En el artículo anterior, vimos los aspectos teóricos de este tipo de problemas. En el presente artículo, mostraremos la implementación del método FP-Growth usando MQL5. Y también pondremos a prueba nuestra aplicación con datos reales.