Русский 中文 Español Deutsch 日本語 Português
preview
Mastering ONNX: The Game-Changer for MQL5 Traders

Mastering ONNX: The Game-Changer for MQL5 Traders

MetaTrader 5Trading systems | 17 October 2023, 13:24
4 174 14
Omega J Msigwa
Omega J Msigwa

"The ability to export and import AI models in ONNX format streamlines the development process, saving time and resources when integrating AI into diverse language ecosystems."


Introduction

It is undeniable that we are in the age of AI and machine learning, on every single day, there is a new AI-based technology deployed in finance, arts and gaming, education, and many more aspects of life.

To us traders learning to harness the power of Artificial Intelligence could give us an edge over the market, letting us detect patterns and relationships that we couldn't see with the human eye.

Despite AI seeming cool and magical, behind the models, there are complex mathematical operations that require a huge amount of work and a high degree of accuracy and focus to figure out and implement right if you were to implement these machine learning models from scratch, something which you don't have thanks to open-source.

Nowadays, you don't even need to be a math and programming genius to build and implement AI models, You need a basic understanding of a certain programming language or tools you want to use for your project, and a pc in some cases you don't even have to own a pc thanks to services like Google Colab, you can code, build and, run AI models for free using python.

As easy as it is to implement Machine Learning models using Python and other popular and matured programming languages, it is not that easy to do it in MQL5, to be honest. Unless you want to reinvent the wheel by creating Machine Learning models in MQL5 from scratch something we do in this article series, I would strongly advise using ONNX to integrate AI models built in python to MQL5. ONNX is now supported in MQL5, I'm so excited, I believe you should too.

  onnx-mql5

A basic understanding of Artificial Intelligence and Machine Learning is required to understand the content of this Article, kindly refer to >> post, post 


What is ONNX?

ONNX, which stands for Open Neural Network Exchange, is an open-source format for representing machine learning and deep learning models. It allows you to convert models trained in one deep learning framework into a common format that can be used in other frameworks, making it easier to work with models across different platforms and tools.

This means you can build machine learning models using any language that supports it other than MQL5, then convert that model into ONNX format, this ONNX model can then be used inside your MQL5 program.

In this post, I will be using Python to build Machine Learning since I am familiar with it, I am told you can use other languages too, I'm unsure. By the way, the entire ONNX documentation seems to be Python-based, I believe at the moment ONNX is made for Python, It makes sense because I don't think there is any language other than Python with advanced AI-based libraries and tools.


Basic Concepts in ONNX:

Before diving into ONNX, you should be familiar with some key concepts:

  • ONNX Model: An ONNX model is a representation of a machine learning model. It consists of a computation graph where nodes represent operations (e.g., convolution, addition) and edges represent data flow between operations.
  • Nodes: Nodes in an ONNX graph represent operations or functions applied to input data. These nodes can be operations like convolution, addition, or custom operations.
  • Tensors: Tensors are multi-dimensional arrays that represent the data flowing between nodes in the computation graph. They can be inputs, outputs, or intermediate data.
  • Operators: Operators are functions applied to tensors in ONNX. Each operator represents a specific operation, like matrix multiplication or element-wise addition.

Building Models in Python and Deploying in MQL5 using ONNX

To Successfully build a machine learning model in Python deploy that model inside your EA, indicator, or Script in MQL5; It requires more than just Python code for the model, Below are the crucial steps to follow so that you end up not only with an ONNX model but with a model that does give accurate predictions you want;

  1. Data Collection
  2. Data Normalization on the MQL5 side 
  3. Building the Models in Python
  4. Getting the Built ONNX model in MQL5
  5. Running the Model in real time


01: Data Collection

Data collection is the first thing that has to be done right inside your MQL5 program, I believe it is best to collect all the data inside your MQL5 program to be consistent with the way we collect the training data and the data that is used during live trading or running the model in real-time Bear in mind that data collection could vary based on the nature of the problem you are trying to solve in this article we'll be trying to solve a regression problem. We are going to use OHLC(Open, High, Low, Close) market information as our primary dataset, where Open, High, and Low are will be used as independent variables while Close price values will be used as the target variable.

Inside ONNX get data.mq5

matrixf GetTrainData(uint start, uint total)
 {
   matrixf return_matrix(total, 3);
   
   ulong last_col;
   
   
    OPEN.CopyRates(Symbol(), PERIOD_CURRENT, COPY_RATES_OPEN, start, total);
    HIGH.CopyRates(Symbol(), PERIOD_CURRENT, COPY_RATES_HIGH, start, total);
    LOW.CopyRates(Symbol(), PERIOD_CURRENT, COPY_RATES_LOW, start, total);
    CLOSE.CopyRates(Symbol(), PERIOD_CURRENT, COPY_RATES_CLOSE, start, total);
    
    return_matrix.Col(OPEN, 0);
    return_matrix.Col(HIGH, 1);
    return_matrix.Col(LOW, 2);
    
    
    csv_name_ = Symbol()+"."+EnumToString(Period())+"."+string(total_bars);
    
       
      x_vars = "OPEN,HIGH,LOW";
      
       
       return_matrix.Resize(total, 4); //if we are collecting the train data collect the target variable also
       
       last_col = return_matrix.Cols()-1; //Column located at the last index is the last column
       
       return_matrix.Col(CLOSE, last_col); //put the close price information in the last column of a matrix
       
       
       csv_name_ +=".targ=CLOSE";
       
       csv_header = x_vars + ",CLOSE";
         
       if (!WriteCsv("ONNX Datafolder\\"+csv_name_+".csv", return_matrix, csv_header))
         Print("Failed to Write to a csv file");
       else
         Print("Data saved to a csv file successfully");
     
    
   return return_matrix;
 } 

What this function does is that it collects the independent variables OHL and the target variable CLOSE, In supervised machine learning the target variable needs to be specified and given to the model so that it can learn upon that and understand the patterns in between the target variable and the rest of the variables, in our case the model will try to understand how does these indicator readings lead to bullish movement or bearish movement. 

When deploying the model, we need to collect the data the same way except this time we'll be collecting without the target variable because that is something we want our trained model to figure out. To predict, so to speak.

That' why there is a different function named GetLiveData, for loading new data for fluent predictions in the market.

Inside ONNX mt5.mq5

matrixf GetLiveData(uint start, uint total)
 {
   matrixf return_matrix(total, 3);
   
   
    OPEN.CopyRates(Symbol(), PERIOD_CURRENT,COPY_RATES_OPEN, start, total);
    HIGH.CopyRates(Symbol(), PERIOD_CURRENT,COPY_RATES_HIGH, start, total);
    LOW.CopyRates(Symbol(), PERIOD_CURRENT,COPY_RATES_LOW, start, total);
        
    return_matrix.Col(OPEN, 0);
    return_matrix.Col(HIGH, 1);
    return_matrix.Col(LOW, 2);
          
      
   return return_matrix;
 }

Collecting the Training Data

    matrixf dataset = GetTrainData(start_bar, total_bars);
    
    Print("Train data\n",dataset);

Outputs:

DK      0       23:10:54.837    ONNX get data (EURUSD,H1)       Train data
PR      0       23:10:54.837    ONNX get data (EURUSD,H1)       [[1.4243405,1.4130603,1.4215617,1.11194]
HF      0       23:10:54.837    ONNX get data (EURUSD,H1)        [1.3976599,1.3894916,1.4053394,1.11189]
RK      0       23:10:54.837    ONNX get data (EURUSD,H1)        [1.402994,1.3919021,1.397626,1.11123]
PM      0       23:10:54.837    ONNX get data (EURUSD,H1)        [1.3848507,1.3761013,1.3718294,1.11022]
FF      0       23:10:54.837    ONNX get data (EURUSD,H1)        [1.3597701,1.3447646,1.3545419,1.1097701]
CH      0       23:10:54.837    ONNX get data (EURUSD,H1)        [1.3461626,1.3522644,1.3433729,1.1106]
NL      0       23:10:54.837    ONNX get data (EURUSD,H1)        [1.3683074,1.3525325,1.3582669,1.10996]

Getting the Live Data

Getting the current bar Information OHL.

matrixf live_data = GetLiveData(0,1);
   
Print("Live data\n",live_data);

Outputs:

MN      0       23:15:47.167    ONNX mt5 (EURUSD,H1)    Live data
KS      0       23:15:47.167    ONNX mt5 (EURUSD,H1)    [[-0.21183228,-0.23540309,-0.20334835]]

The way live data is loaded may be slightly different when preparing the data for timeseries forecasting models, like RNN, GRU and, LSTM

Notice how I used matrixf which stands for matrix float instead of just matrix!! this is to ensure Data Type Compatibility between MQL5  and Python: Make sure that the data type of the input data is compatible with the data type expected by the ONNX model. If your ONNX model expects float32 input, ensure that your input data is also of type float32. ONNX  is compatible with float32 and float64, getting this wrong may lead to errors that looks like this;
error 2023.09.18 18:03:53.212   ONNX: invalid parameter size, expected 1044480 bytes instead of 32640


02: Data Normalization on The MQL5 Side

Data normalization is among the most crucial things that need to be done right for a dataset that is going to be used by a machine learning model.

Bear in mind that the normalization technique that is used to prepare the training data needs to be the same that is used to prepare the testing and the live data. This means that if the technique used was MinMaxScaler, the min and max values which are the fundamental variables in the MinMaxScaler equation, that were used in preparing the train data have to be used to keep normalizing the new data that is going to be handled by the model elsewhere. To achieve this consistency we have to save the variables for each normalization technique to a csv file:

Data normalization is for independent variables only, it doesn't matter what kind of problem you are trying to solve, you don't have to normalize the target variable

We are going to be using the Preprocessing class found here.

Inside ONNX get data.mq5 script

 //--- Saving the normalization prameters
 
 switch(NORM)
   {
    case  NORM_MEAN_NORM:
      
       //--- saving the mean
       
       norm_params.Assign(norm_x.mean_norm_scaler.mean);
       WriteCsv(normparams_folder+csv_name_+".mean_norm_scaler.mean.csv",norm_params,x_vars);
       
       //--- saving the min
       
       norm_params.Assign(norm_x.mean_norm_scaler.min);
       WriteCsv(normparams_folder+csv_name_+".mean_norm_scaler.min.csv",norm_params,x_vars);
       
       //--- saving the max
       
       norm_params.Assign(norm_x.mean_norm_scaler.max);
       WriteCsv(normparams_folder+csv_name_+".mean_norm_scaler.max.csv",norm_params,x_vars);
           
      break;
      
    case NORM_MIN_MAX_SCALER:
       
       //--- saving the min
       
       norm_params.Assign(norm_x.min_max_scaler.min);
       WriteCsv(normparams_folder+csv_name_+".min_max_scaler.min.csv",norm_params,x_vars);
       
       //--- saving the max
       
       norm_params.Assign(norm_x.min_max_scaler.max);
       WriteCsv(normparams_folder+csv_name_+".min_max_scaler.max.csv",norm_params,x_vars);
       
       
       break;
       
    case NORM_STANDARDIZATION:

       //--- saving the mean
       
       norm_params.Assign(norm_x.standardization_scaler.mean);             
       WriteCsv(normparams_folder+csv_name_+".standardization_scaler.mean.csv",norm_params,x_vars);
       
       //--- saving the std
       
       norm_params.Assign(norm_x.standardization_scaler.std);
       WriteCsv(normparams_folder+csv_name_+".standardization_scaler.std.csv",norm_params,x_vars);
       
       break;
   } 

Outputs:

normalization parameters

When Standardization Scaler was used inside the csv files the parameters looked like this;


Notice that the normalization is also integrated inside the GetData function, since normalization is so important, each data matrix returned by both of the functions responsible for collecting data must be a matrix with normalized price values.

Inside ONNX get data.mq5 script

matrixf GetTrainData(uint start, uint total)
 {
   matrixf return_matrix(total, 3);
   
   ulong last_col;
   
   
    OPEN.CopyRates(Symbol(), PERIOD_CURRENT, COPY_RATES_OPEN, start, total);
    HIGH.CopyRates(Symbol(), PERIOD_CURRENT, COPY_RATES_HIGH, start, total);
    LOW.CopyRates(Symbol(), PERIOD_CURRENT, COPY_RATES_LOW, start, total);
    CLOSE.CopyRates(Symbol(), PERIOD_CURRENT, COPY_RATES_CLOSE, start, total);
    
    return_matrix.Col(OPEN, 0);
    return_matrix.Col(HIGH, 1);
    return_matrix.Col(LOW, 2);
    
    matrixf norm_params = {};
    
    csv_name_ = Symbol()+"."+EnumToString(Period())+"."+string(total_bars);
    
       
      x_vars = "OPEN,HIGH,LOW";
      
       while (CheckPointer(norm_x) != POINTER_INVALID)
         delete (norm_x);
         
       norm_x = new CPreprocessing<vectorf, matrixf>(return_matrix, NORM);
    
       
 
 //--- Saving the normalization prameters
 
 switch(NORM)
   {
    case  NORM_MEAN_NORM:
      
       //--- saving the mean
       
       norm_params.Assign(norm_x.mean_norm_scaler.mean);
       WriteCsv(normparams_folder+csv_name_+".mean_norm_scaler.mean.csv",norm_params,x_vars);
       
       //--- saving the min
       
       norm_params.Assign(norm_x.mean_norm_scaler.min);
       WriteCsv(normparams_folder+csv_name_+".mean_norm_scaler.min.csv",norm_params,x_vars);
       
       //--- saving the max
       
       norm_params.Assign(norm_x.mean_norm_scaler.max);
       WriteCsv(normparams_folder+csv_name_+".mean_norm_scaler.max.csv",norm_params,x_vars);
           
      break;
      
    case NORM_MIN_MAX_SCALER:
       
       //--- saving the min
       
       norm_params.Assign(norm_x.min_max_scaler.min);
       WriteCsv(normparams_folder+csv_name_+".min_max_scaler.min.csv",norm_params,x_vars);
       
       //--- saving the max
       
       norm_params.Assign(norm_x.min_max_scaler.max);
       WriteCsv(normparams_folder+csv_name_+".min_max_scaler.max.csv",norm_params,x_vars);
       
       
       break;
       
    case NORM_STANDARDIZATION:

       //--- saving the mean
       
       norm_params.Assign(norm_x.standardization_scaler.mean);             
       WriteCsv(normparams_folder+csv_name_+".standardization_scaler.mean.csv",norm_params,x_vars);
       
       //--- saving the std
       
       norm_params.Assign(norm_x.standardization_scaler.std);
       WriteCsv(normparams_folder+csv_name_+".standardization_scaler.std.csv",norm_params,x_vars);
       
       break;
   }
 
       return_matrix.Resize(total, 4); //if we are collecting the train data collect the target variable also
       
       last_col = return_matrix.Cols()-1; //Column located at the last index is the last column
       
       return_matrix.Col(CLOSE, last_col); //put the close price information in the last column of a matrix
       
       
       csv_name_ +=".targ=CLOSE";
       
       csv_header = x_vars + ",CLOSE";
         
       if (!WriteCsv("ONNX Datafolder\\"+csv_name_+".csv", return_matrix, csv_header))
         Print("Failed to Write to a csv file");
       else
         Print("Data saved to a csv file successfully");
     
    
   return return_matrix;
 } 

 Lastly, The data was saved inside a CSV so that It could be shared with Python code.


03: Building the Models in Python

I will be building a Multi-Layer Perceptron neural network, but you can build any model of your choice. You are not restricted to this specific type of model. Start by installing Python in your system if you haven't After that install virtualenv by running the following commands from Windows CMD, not to be confused with Powershell!!

$ pip3 install virtualenv

After that run,

$ virtualenv venv

This will create a Python virtual environment for your Windows machine, which I believe most of us are on Windows, the process may be a bit different for Mac users and Linux folks, After that start a virtual environment by running this command

$ venv\Scripts\activate

After that install all the dependencies used in this tutorial by running

$ pip install -r requirements.txt #This txt file is found at https://github.com/MegaJoctan/ONNX-MQL5/blob/main/requirements.txt

It is always important to isolate the project by creating a virtual environment to avoid conflicts between the modules and Python versions and to make the project easy to share

Importing and Initializing MT5

import MetaTrader5 as mt5

if not mt5.initialize(): #This will open MT5 app in your pc

   print("initialize() failed, error code =",mt5.last_error())

   quit()

# program logic and ML code will be here



mt5.shutdown() #This closes the program

# Getting the data we stored in the Files path on Metaeditor

data_path = terminal_info.data_path

dataset_path = data_path + "\\MQL5\\Files\\ONNX Datafolder"

We need to check if the path exists, if it doesn't exist that means we haven't collected the data on the MT5 side of things.

import os if not os.path.exists(dataset_path):

print("Dataset folder doesn't exist | Be sure you are referring to the correct path and the data is collected from MT5 side of things")
quit()

Building A Multi-Layer Perceptron Neural Network(MLP)

We are going to wrap a MLP NN inside a class to make our code into readable sections;

01: Class Initialization

Data is collected and split into training and testing samples, whilst important variables are declared to be available for the whole class to use,

class NeuralNetworkClass():
    def __init__(self, csv_name, target_column, batch_size=32):

    # Loading the dataset and storing to a variable Array        
        self.data = pd.read_csv(dataset_path+"\\"+csv_name)

        if self.data.empty:
            print(f"No such dataset or Empty dataset csv = {csv_name}")
            quit() # quit the program
        

        print(self.data.head()) # Print 5 first rows of a given data

        self.target_column = target_column
        # spliting the data into training and testing samples

        X = self.data.drop(columns=self.target_column).to_numpy() # droping the targeted column, the rest is x variables
        Y = self.data[self.target_column].to_numpy() # We convert data arrays to numpy arrays compartible with sklearn and tensorflow
                
        
        self.train_x, self.test_x, self.train_y, self.test_y = train_test_split(X, Y, test_size=0.3, random_state=42) # splitting the data into training and testing samples 
        
        print(f"train x shape {self.train_x.shape}\ntest x shape {self.test_x.shape}")
                
        self.input_size = self.train_x.shape[-1] # obtaining the number of columns in x variable as our inputs
        
        self.output_size = 1 # We are solving for a regression problem we need to have a single output neuron
        
        self.batch_size = batch_size
        
        self.model = None # Object to store the model
        
        self.plots_directory = "Plots"
        self.models_directory = "Models"
                

Outputs:

pd head

02: Building the Neural Network model

Our single layered neural network is defined with given number of neurons.

    def BuildNeuralNetwork(self, activation_function='relu', neurons = 10):

        # Create a Feedforward Neural Network model
        self.model = keras.Sequential([
            keras.layers.Input(shape=(self.input_size,)),  # Input layer
            keras.layers.Dense(units=neurons, activation=activation_function, activity_regularizer=l2(0.01), kernel_initializer="he_uniform"),  # Hidden layer with an activation function
            keras.layers.Dense(units=self.output_size, activation='linear', activity_regularizer=l2(0.01), kernel_initializer="he_uniform")  
        ])

        # Print a summary of the model's architecture.
        self.model.summary()

Outputs:

sequential model summary

03: Training and Testing the Neural Network Model

    def train_network(self, epochs=100, learning_rate=0.001, loss='mean_squared_error'):

        early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True) # Early stoppage mechanism | stop training when there is no major change in loss in the last to epochs, defined by the variable patience

        adam = optimizers.Adam(learning_rate=learning_rate) # Adam optimizer >> https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
    
        # Compile the model: Specify the loss function, optimizer, and evaluation metrics.
        self.model.compile(loss=loss, optimizer=adam, metrics=['mae'])    

        # One hot encode the validation and train target variables
         
        validation_y = self.test_y
        y = self.train_y

        history = self.model.fit(self.train_x, y, epochs=epochs, batch_size=self.batch_size, validation_data=(self.test_x, validation_y), callbacks=[early_stopping], verbose=2)
        
        if not os.path.exists(self.plots_directory): #create plots path if it doesn't exist for saving the train-test plots
            os.makedirs(self.plots_directory)
        
        # save the loss and validation loss plot
        
        plt.figure(figsize=(12, 6))
        plt.plot(history.history['loss'], label='Training Loss')
        plt.plot(history.history['val_loss'], label='Validation Loss')
        plt.xlabel('Epochs')
        plt.ylabel('Loss')
        plt.legend()
        title = 'Training and Validation Loss Curves'
        plt.title(title)
        plt.savefig(fname=f"{self.plots_directory}\\"+title)

        
        # use the trained model to make predictions on the trained data 
        
        pred = self.model.predict(self.train_x)

        acc = metrics.r2_score(self.train_y, pred)

        # Plot actual & pred
        count = [i*0.1 for i in range(len(self.train_y))]

        title = f'MLP {self.target_column} - Train'
        
        # Saving the plot containing information about predictions and actual values
        
        plt.figure(figsize=(7, 5))
        plt.plot(count, self.train_y, label = "Actual")
        plt.plot(count, pred,  label = "forecast")
        plt.xlabel('Actuals')
        plt.ylabel('Preds')
        plt.title(title+f" | Train acc={acc}")
        plt.legend()
        plt.savefig(fname=f"{self.plots_directory}\\"+title)    

        self.model.save(f"Models\\lstm-pat.{self.target_column}.h5") #saving the model in h5 format, this will help us to easily convert this model to onnx later


    def test_network(self):
        # Plot actual & pred
        
        count = [i*0.1 for i in range(len(self.test_y))]

        title = f'MLP {self.target_column} - Test'
        

        pred = self.model.predict(self.test_x)

        acc = metrics.r2_score(self.test_y, pred)

        
        # Saving the plot containing information about predictions and actual values
        
        plt.figure(figsize=(7, 5))
        plt.plot(count, self.test_y, label = "Actual")
        plt.plot(count, pred,  label = "forecast")
        plt.xlabel('Actuals')
        plt.ylabel('Preds')
        plt.title(title+f" | Train acc={acc}")
        plt.legend()
        plt.savefig(fname=f"{self.plots_directory}\\"+title)    
        
        if not os.path.exists(self.plots_directory): #create plots path if it doesn't exist for saving the train-test plots
            os.makedirs(self.plots_directory)
        
        plt.savefig(fname=f"{self.plots_directory}\\"+title)    
        
        return acc

Outputs:

Epoch 1/50
219/219 - 2s - loss: 1.2771 - mae: 0.3826 - val_loss: 0.1153 - val_mae: 0.0309 - 2s/epoch - 8ms/step
Epoch 2/50
219/219 - 1s - loss: 0.0836 - mae: 0.0305 - val_loss: 0.0582 - val_mae: 0.0291 - 504ms/epoch - 2ms/step
Epoch 3/50
219/219 - 1s - loss: 0.0433 - mae: 0.0283 - val_loss: 0.0323 - val_mae: 0.0284 - 515ms/epoch - 2ms/step
Epoch 4/50
219/219 - 0s - loss: 0.0262 - mae: 0.0272 - val_loss: 0.0218 - val_mae: 0.0270 - 482ms/epoch - 2ms/step
Epoch 5/50
...
...
Epoch 48/50
219/219 - 0s - loss: 0.0112 - mae: 0.0106 - val_loss: 0.0112 - val_mae: 0.0121 - 490ms/epoch - 2ms/step
Epoch 49/50
219/219 - 0s - loss: 0.0112 - mae: 0.0106 - val_loss: 0.0112 - val_mae: 0.0109 - 486ms/epoch - 2ms/step
Epoch 50/50
219/219 - 1s - loss: 0.0112 - mae: 0.0106 - val_loss: 0.0112 - val_mae: 0.0097 - 501ms/epoch - 2ms/step
219/219 [==============================] - 0s 2ms/step
C:\Users\Omega Joctan\OneDrive\Documents\onnx article\ONNX python\venv\Lib\site-packages\keras\src\engine\training.py:3079: UserWarning: You are saving your model as an HDF5 file via `model.save()`. This file format is considered legacy. We recommend using instead the native Keras format, e.g. `model.save('my_model.keras')`.
  saving_api.save_model(
94/94 [==============================] - 0s 2ms/step
Test accuracy = 0.9336617822086006

train accuracy

The Neural network model had a 93% accuracy during Training and about 95% during testing, could be overfitted but we are going to proceed with it anyway.

04: Saving the ONNX model.

It is generally a good practice to save a model once the training is successfully done and you are satisfied with the performance of the model in both training and out-of-sample validation, We need to add ONNX runtime code to save the model during the train_network function in our class. First of all, we need to install two libraries onnx, and tf2onnx

def train_network(self, epochs=100, learning_rate=0.001, loss='mean_squared_error'):
# at the end of this function
# ....

    self.model.save(f"Models\\MLP.REG.{self.target_column}.{self.data.shape[0]}.h5") #saving the model in h5 format, this will help us to easily convert this model to onnx later
    self.saveONNXModel()


def saveONNXModel(self, folder="ONNX Models"):
    
    path = data_path + "\\MQL5\\Files\\" + folder 
    
    if not os.path.exists(path): # create this path if it doesn't exist
        os.makedirs(path)
    
    onnx_model_name = f"MLP.REG.{self.target_column}.{self.data.shape[0]}.onnx"
    path +=  "\\" + onnx_model_name
    
    
    loaded_keras_model = load_model(f"Models\\MLP.REG.{self.target_column}.{self.data.shape[0]}.h5") 
    
    onnx_model, _ = tf2onnx.convert.from_keras(loaded_keras_model, output_path=path)

    onnx.save(onnx_model, path )
    
    print(f'Saved model to {path}')

Outputs:

onnx saved

You might have noticed that I chose to save the ONNX model under the Files parent directory, why this directory? This is because it is easier to include the ONNX file as a resource inside our MQL5 program such as an Expert advisors, or an indicator.


04: Getting the Built ONNX model in MQL5

#resource "\\Files\\ONNX Models\\MLP.REG.CLOSE.10000.onnx" as uchar RNNModel[]

This does Import the ONNX model and stores it inside the RNNModel uchar array.

The next thing we need to do is to define the ONNX handle as a global variable and create the handle inside the OnInit function.

Inside ONNX mt5.mq5 EA

long mlp_onnxhandle;

#include <MALE5\preprocessing.mqh>
CPreprocessing<vectorf, matrixf> *norm_x;

int inputs[], outputs[];

vectorf OPEN,
       HIGH, 
       LOW;
       
//+------------------------------------------------------------------+
//| Expert initialization function                                   |
//+------------------------------------------------------------------+
int OnInit()
  {
//---
   
  if (!LoadNormParams()) //Load the normalization parameters we saved once
    {
      Print("Normalization parameters csv files couldn't be found \nEnsure you are collecting data and Normalizing them using [ONNX get data.ex5] Script \nTrain the Python model again if necessary");
      return INIT_FAILED;
    }
   
//--- ONNX SETTINGS
 
  mlp_onnxhandle = OnnxCreateFromBuffer(RNNModel, MQLInfoInteger(MQL_DEBUG) ? ONNX_DEBUG_LOGS : ONNX_DEFAULT); //creating onnx handle buffer | rUN DEGUG MODE during debug mode
  
  if (mlp_onnxhandle == INVALID_HANDLE)
    {
       Print("OnnxCreateFromBuffer Error = ",GetLastError());
       return INIT_FAILED;
    }

//--- since not all sizes defined in the input tensor we must set them explicitly
//--- first index - batch size, second index - series size, third index - number of series (only Close)
   
   OnnxTypeInfo type_info; //Getting onnx information for Reference In case you forgot what the loaded ONNX is all about

   long input_count=OnnxGetInputCount(mlp_onnxhandle);
   Print("model has ",input_count," input(s)");
   for(long i=0; i<input_count; i++)
     {
      string input_name=OnnxGetInputName(mlp_onnxhandle,i);
      Print(i," input name is ",input_name);
      if(OnnxGetInputTypeInfo(mlp_onnxhandle,i,type_info))
        {
          PrintTypeInfo(i,"input",type_info);
          ArrayCopy(inputs, type_info.tensor.dimensions);
        }
     }

   long output_count=OnnxGetOutputCount(mlp_onnxhandle);
   Print("model has ",output_count," output(s)");
   for(long i=0; i<output_count; i++)
     {
      string output_name=OnnxGetOutputName(mlp_onnxhandle,i);
      Print(i," output name is ",output_name);
      if(OnnxGetOutputTypeInfo(mlp_onnxhandle,i,type_info))
       {
         PrintTypeInfo(i,"output",type_info);
         ArrayCopy(outputs, type_info.tensor.dimensions);
       }
     }
   
//---

   if (MQLInfoInteger(MQL_DEBUG))
    {
      Print("Inputs & Outputs");
      ArrayPrint(inputs);
      ArrayPrint(outputs);
    }
   
   const long input_shape[] = {batch_size, 3};
   
   if (!OnnxSetInputShape(mlp_onnxhandle, 0, input_shape)) //Giving the Onnx handle the input shape
     {
       printf("Failed to set the input shape Err=%d",GetLastError());
       return INIT_FAILED;
     }
   
   const long output_shape[] = {batch_size, 1};
   
   if (!OnnxSetOutputShape(mlp_onnxhandle, 0, output_shape)) //giving the onnx handle the output shape
     {
       printf("Failed to set the input shape Err=%d",GetLastError());
       return INIT_FAILED;
     }
   
//---

   return(INIT_SUCCEEDED);
  }

Outputs:

PR      0       18:57:10.265    ONNX mt5 (EURUSD,H1)    ONNX: Creating and using per session threadpools since use_per_session_threads_ is true
CN      0       18:57:10.265    ONNX mt5 (EURUSD,H1)    ONNX: Dynamic block base set to 0
EE      0       18:57:10.266    ONNX mt5 (EURUSD,H1)    ONNX: Initializing session.
IM      0       18:57:10.266    ONNX mt5 (EURUSD,H1)    ONNX: Adding default CPU execution provider.
JN      0       18:57:10.269    ONNX mt5 (EURUSD,H1)    ONNX: Use DeviceBasedPartition as default
QK      0       18:57:10.269    ONNX mt5 (EURUSD,H1)    ONNX: Saving initialized tensors.
GR      0       18:57:10.269    ONNX mt5 (EURUSD,H1)    ONNX: Done saving initialized tensors
RI      0       18:57:10.269    ONNX mt5 (EURUSD,H1)    ONNX: Session successfully initialized.
JF      0       18:57:10.269    ONNX mt5 (EURUSD,H1)    model has 1 input(s)
QR      0       18:57:10.269    ONNX mt5 (EURUSD,H1)    0 input name is input_1
NF      0       18:57:10.269    ONNX mt5 (EURUSD,H1)       type ONNX_TYPE_TENSOR
PM      0       18:57:10.269    ONNX mt5 (EURUSD,H1)       data type ONNX_TYPE_TENSOR
HI      0       18:57:10.269    ONNX mt5 (EURUSD,H1)       shape [-1, 3]
FS      0       18:57:10.269    ONNX mt5 (EURUSD,H1)       0 input shape must be defined explicitly before model inference
NE      0       18:57:10.269    ONNX mt5 (EURUSD,H1)       shape of input data can be reduced to [3] if undefined dimension set to 1
GD      0       18:57:10.269    ONNX mt5 (EURUSD,H1)    model has 1 output(s)
GQ      0       18:57:10.269    ONNX mt5 (EURUSD,H1)    0 output name is dense_1
LJ      0       18:57:10.269    ONNX mt5 (EURUSD,H1)       type ONNX_TYPE_TENSOR
NQ      0       18:57:10.269    ONNX mt5 (EURUSD,H1)       data type ONNX_TYPE_TENSOR
LF      0       18:57:10.269    ONNX mt5 (EURUSD,H1)       shape [-1, 1]
KQ      0       18:57:10.269    ONNX mt5 (EURUSD,H1)       0 output shape must be defined explicitly before model inference
CO      0       18:57:10.269    ONNX mt5 (EURUSD,H1)       shape of output data can be reduced to [1] if undefined dimension set to 1
GR      0       18:57:10.269    ONNX mt5 (EURUSD,H1)    Inputs & Outputs
IE      0       18:57:10.269    ONNX mt5 (EURUSD,H1)    -1  3
CK      0       18:57:10.269    ONNX mt5 (EURUSD,H1)    -1  1

Getting Live Data

As I said earlier, the live data must be obtained from the market and normalized the same way it was normalized when collecting the data for training.

Inside ONNX mt5.mq5 EA

matrixf GetLiveData(uint start, uint total)
 {
   matrixf return_matrix(total, 3);
   
   
    OPEN.CopyRates(Symbol(), PERIOD_CURRENT,COPY_RATES_OPEN, start, total);
    HIGH.CopyRates(Symbol(), PERIOD_CURRENT,COPY_RATES_HIGH, start, total);
    LOW.CopyRates(Symbol(), PERIOD_CURRENT,COPY_RATES_LOW, start, total);
        
    return_matrix.Col(OPEN, 0);
    return_matrix.Col(HIGH, 1);
    return_matrix.Col(LOW, 2);
     
     if (!norm_x.Normalization(return_matrix))
        Print("Failed to Normalize");  
      
   return return_matrix;
 }

For the norm_x class instance to work, it was declared inside the LoadNormParams() function inside OnInit, This function loads the saved normalization parameters from a respective CSV file.

Inside ONNX mt5.mq5 EA

bool LoadNormParams()
 {
    vectorf min = {}, max ={}, mean={} , std = {};
    
    csv_name_ = Symbol()+"."+EnumToString(Period())+"."+string(total_bars);
    
    switch(NORM)
      {
       case  NORM_MEAN_NORM:
          
          mean = ReadCsvVector(normparams_folder+csv_name_+".mean_norm_scaler.mean.csv"); //--- Loading the mean
          min = ReadCsvVector(normparams_folder+csv_name_+".mean_norm_scaler.min.csv"); //--- Loading the min 
          max = ReadCsvVector(normparams_folder+csv_name_+".mean_norm_scaler.max.csv"); //--- Loading the max
          
          if (MQLInfoInteger(MQL_DEBUG))
              Print(EnumToString(NORM),"\nMean ",mean,"\nMin ",min,"\nMax ",max);
          
          norm_x = new CPreprocessing<vectorf,matrixf>(max, mean, min);
           
          if (mean.Sum()<=0 && min.Sum()<=0 && max.Sum() <=0)
              return false;  

         break;
         
       case NORM_MIN_MAX_SCALER:
          
          min = ReadCsvVector(normparams_folder+csv_name_+".min_max_scaler.min.csv"); //--- Loading the min
          max = ReadCsvVector(normparams_folder+csv_name_+".min_max_scaler.max.csv"); //--- Loading the max  
       
           
          if (MQLInfoInteger(MQL_DEBUG))
              Print(EnumToString(NORM),"\nMin ",min,"\nMax ",max);
              
          norm_x = new CPreprocessing<vectorf,matrixf>(max, min);
          
          
          if (min.Sum()<=0 && max.Sum() <=0)
            return false;
            
          break;
          
       case NORM_STANDARDIZATION:
          
          mean = ReadCsvVector(normparams_folder+csv_name_+".standardization_scaler.mean.csv"); //--- Loading the mean
          std = ReadCsvVector(normparams_folder+csv_name_+".standardization_scaler.std.csv"); //--- Loading the std
         
          if (MQLInfoInteger(MQL_DEBUG))
              Print(EnumToString(NORM),"\nMean ",mean,"\nStd ",std);
             
           norm_x = new CPreprocessing<vectorf,matrixf>(mean, std, NORM_STANDARDIZATION);
            
          if (mean.Sum()<=0 && std.Sum() <=0)
            return false;
            
          break;
      }
      
   return true;
 }


05: Running the Model in Real-time

To use the model inside the OnTick Function, You just need to call the OnnxRun function and pass to it the ONNX handle, a vector, or a matrix of float values for both inputs and predictions and that's it.

Inside ONNX mt5.mq5 EA

void OnTick()
  {
//---
   matrixf input_data = GetLiveData(0,1);
   vectorf output_data(1); //It is very crucial to resize this vector or matrix
   
   
   if (!OnnxRun(mlp_onnxhandle, ONNX_NO_CONVERSION, input_data, output_data))
     {
       Print("Failed to Get the Predictions Err=",GetLastError());
       ExpertRemove();
       return;
     }
   
   Comment("inputs_data\n",input_data,"\npredictions\n",output_data);
}

The output data vector or float matrix needs to be resized to avoid Error code 5805 which stands for ERR_ONNX_INVALID_PARAMETER. Since I only have one output in the neural network that's why I have resized this vector to have the size of 1 If, I were to use a matrix then, I was supposed to resize it to 1 row and 1 column.

Outputs:

chart

Great, Everything is working just fine. We are now using a Neural Network model made and trained using Python inside MetaTrader5. The process isn't that difficult though, Cheers.


Advantages of Using ONNX in MQL5

  1. Interoperability: ONNX provides a common format for representing deep learning models. This format allows models trained in one deep learning framework (such as TensorFlow, PyTorch, or scikit-learn) to be used in MQL5 without the need for extensive model reimplementation. This could us save a lot of time as we no longer have to hard code models from scratch to get them working in MQL5
  2. Flexibility: ONNX supports a wide range of deep-learning model types, from traditional feedforward neural networks to more complex models like recurrent neural networks (RNNs) and convolutional neural networks (CNNs). This flexibility makes it suitable for various applications.
  3. Efficiency: ONNX models can be optimized for efficient deployment on different hardware and platforms. This means you can deploy models on edge devices, mobile devices, cloud servers, and even specialized hardware accelerators.
  4. Community Support: ONNX has gained substantial community support. Major deep learning frameworks, like TensorFlow, PyTorch, and scikit-learn, support exporting models to ONNX format, and various runtime engines, like ONNX Runtime, make it easy to deploy ONNX models.
  5. Broad Ecosystem: ONNX is integrated into various software packages, and there are extensive tools for working with ONNX models. You can convert, optimize, and run models in the ONNX format using these tools.
  6. Cross-Platform Compatibility: ONNX is designed to be cross-platform, meaning models exported in ONNX format can run on different operating systems outside and hardware without modification. 
  7. Model Evolution: ONNX supports model versioning and evolution. You can improve and extend your models over time while maintaining compatibility with previous versions.
  8. Standardization: ONNX is becoming a de facto standard for interoperability between different deep learning frameworks, making it easier for the community to share models and tools. 


Final thoughts

ONNX is especially valuable in scenarios where you need to leverage models across different frameworks, deploy models on a variety of platforms, or collaborate with others who might be using different deep learning tools. It simplifies the process of working with deep learning models, and as the ecosystem continues to grow, ONNX's advantages become even more significant. In this article we have seen the 5 important steps one needs to follow to get started with a working model to say the least, you can extend this code to fit your needs. Also for the program to work on the strategy tester the normalization CSV files needs to be read inside a tester, something I haven't covered in this article. 

Best regards

File Usage
 neuralnet.py  The main python script file, contains all the neural network implementation in python language
ONNX mt5.mq5  An expert advisor, showing how to use the ONNX model in trading situations
 ONNX get data.mq5   A script for collecting and preparing data to be shared with the python script


Attached files |
MQL5-CODE.zip (9.14 KB)
Last comments | Go to discussion (14)
Omega J Msigwa
Omega J Msigwa | 11 Feb 2024 at 13:40
Emanuele Mastronardi #:

Hi, very very good article

I wonder if it is possible to export the data for a certain period, like by 2018 to 2020

thank you! 

On copyrates and copybuffers set time from 2018 to 2020
amrhamed83
amrhamed83 | 9 Jul 2024 at 16:06

@Omega J Msigwa thank you very much for this article. Can you please update the tutorial file since the last version of MALE5 doesn't have CPreprocessing? If not possible, which version of MALE5 was used to run this tutorial?

I am not sure if there is documentation for the library. 


Thanks

Omega J Msigwa
Omega J Msigwa | 9 Jul 2024 at 17:59
amrhamed83 #:

@Omega J Msigwa thank you very much for this article. Can you please update the tutorial file since the last version of MALE5 doesn't have CPreprocessing? If not possible, which version of MALE5 was used to run this tutorial?

I am not sure if there is documentation for the library. 


Thanks

Use the cprecessi mg code attached in this article for anything concerning this tutorial 
amrhamed83
amrhamed83 | 9 Jul 2024 at 19:05
Omega J Msigwa #:
Use the cprecessi mg code attached in this article for anything concerning this tutorial 

I am referring to this line : 

 #include <MALE5\preprocessing.mqh> // you point to use https://github.com/MegaJoctan/MALE5/blob/MQL5-ML/preprocessing.mqh which doesn't have CPreprocessing

CPreprocessing<vectorf, matrixf> *norm_x;

Omega J Msigwa
Omega J Msigwa | 10 Jul 2024 at 08:53

Ok got it, if thats the case change that line to:

#include <preprocessing.mqh>

After saving the preprocessing.mqh found on this zip file (attached in the article) , under include folder.

CPreprocessing has been deprecated since v2.0.0. Which is the version used in this article.

Alternatively, call each of the scalers present in the preprocessing file instead of CPreprocessing. Assuming you are using MALE5 version 3.0.0

  • RobustScaler
  • MinMaxScaler
  • StandardizationScaler

Each scaler class provides.

fit_transform( const matrix &X)

Which fits the scaler on the data matrix X and performs the transformation.

transform( const matrix &X)

Which transforms the data matrix X using the fitted scaler.

transform(const vector &X)

Which transforms the data vector X using the fitted scaler.

Let me know if this was helpful.

Launching MetaTrader VPS: A step-by-step guide for first-time users Launching MetaTrader VPS: A step-by-step guide for first-time users
Everyone who uses trading robots or signal subscriptions sooner or later recognizes the need to rent a reliable 24/7 hosting server for their trading platform. We recommend using MetaTrader VPS for several reasons. You can conveniently pay and manage the subscription through your MQL5.community account.
StringFormat(). Review and ready-made examples StringFormat(). Review and ready-made examples
The article continues the review of the PrintFormat() function. We will briefly look at formatting strings using StringFormat() and their further use in the program. We will also write templates to display symbol data in the terminal journal. The article will be useful for both beginners and experienced developers.
Learn how to deal with date and time in MQL5 Learn how to deal with date and time in MQL5
A new article about a new important topic which is dealing with date and time. As traders or programmers of trading tools, it is very crucial to understand how to deal with these two aspects date and time very well and effectively. So, I will share some important information about how we can deal with date and time to create effective trading tools smoothly and simply without any complicity as much as I can.
Data label for time series mining (Part 3):Example for using label data Data label for time series mining (Part 3):Example for using label data
This series of articles introduces several time series labeling methods, which can create data that meets most artificial intelligence models, and targeted data labeling according to needs can make the trained artificial intelligence model more in line with the expected design, improve the accuracy of our model, and even help the model make a qualitative leap!