
改编版 MQL5 网格对冲 EA(第 IV 部分):优化简单网格策略(I)
在第四篇中,我们重新审视了之前开发的“简单对冲”和“简单网格”智能系统(EA)。我们的专注点转移到通过数学分析和暴力方式完善简单网格 EA,旨在优化策略用法。本文深入策略的数学优化,为在以后文章中探索未来基于编码的优化奠定了基础。

开发回放系统(第 56 部分):调整模块
虽然模块之间已经可以正常交互,但在回放服务中尝试使用鼠标指标时会出现错误。在进入下一步之前,我们需要解决这个问题。此外,我们还将修复鼠标指标代码中的一个问题。所以这个版本经过适当的打磨,最终会稳定下来。

开发回放系统(第 55 部分):控制模块
在本文中,我们将实现一个控制指标,以便它可以集成到我们正在开发的消息系统中。虽然这并不难,但关于这个模块的初始化,有一些细节需要了解。此处提供的材料仅用于教育目的。除了学习和掌握所示的概念外,绝不应将其视为任何目的的应用程序。

您应当知道的 MQL5 向导技术(第 18 部分):配合本征向量进行神经架构搜索
神经架构搜素,是一种判定理想神经网络设置的自动化方式,在面对许多选项和大型测试数据集时可能是一个加分项。我们试验了当本征向量搭配时,如何令这个过程更加高效。

化学反应优化 (CRO) 算法(第二部分):汇编和结果
在第二部分中,我们将把化学运算符整合到一个算法中,并对其结果进行详细分析。让我们来看看化学反应优化 (CRO) 方法是如何解决测试函数的复杂问题的。

人工电场算法(AEFA)
本文介绍了一种受库仑静电力定律启发的人工电场算法(AEFA)。该算法通过模拟电学现象,利用带电粒子及其相互作用来解决复杂的优化问题。与其他基于自然法则的算法相比,AEFA具有独特性质。

化学反应优化(CRO)算法(第一部分):在优化中处理化学
在本文的第一部分中,我们将深入化学反应的世界并发现一种新的优化方法!化学反应优化 (CRO,Chemical reaction optimization) 利用热力学定律得出的原理来实现有效的结果。我们将揭示分解、合成和其他化学过程的秘密,这些秘密成为了这种创新方法的基础。

MQL5 向导技巧须知(第27部分):移动平均线与攻击角度
攻击角度是一个经常被引用的指标,其陡峭程度被认为与当前趋势的强度密切相关。让我们来看一下通常如何使用和理解该指标,并探讨在测量时是否可以做出一些改变,以优化那些将其纳入交易系统的应用效果。

开发回放系统(第 53 部分):事情变得复杂(五)
在本文中,我们将介绍一个很少有人了解的重要话题:定制事件。危险。这些要素的优缺点。对于希望成为 MQL5 或其他语言专业程序员的人来说,本主题至关重要。在此,我们将重点介绍 MQL5 和 MetaTrader 5。

用于预测波动性的计量经济学工具:GARCH模型
文章描述了条件异方差非线性模型(GARCH)的特性。在GARCH模型的基础上,构建了iGARCH指标来预测未来一步的波动性。该模型参数的估计使用了ALGLIB数值分析库。

您应当知道的 MQL5 向导技术(第 16 部分):配合本征向量进行主成分分析
本文所见的主成分分析,是数据分析中的一种降维技术,文中还有如何配合本征值和向量来实现它。一如既往,我们瞄向的是开发一个可在 MQL5 向导中使用的原型专业信号类。

开发回放系统(第 51 部分):事情变得复杂(三)
在本文中,我们将研究 MQL5 编程领域最困难的问题之一:如何正确获取图表 ID,以及为什么对象有时不会绘制在图表上。此处提供的材料仅用于教学目的,在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。

开发回放系统(第 50 部分):事情变得复杂 (二)
我们将解决图表 ID 问题,同时开始为用户提供使用个人模板对所需资产进行分析和模拟的能力。此处提供的材料仅用于教学目的,不应被视为除学习和掌握所提供概念以外的任何目的的应用。

《数据科学与机器学习(第25部分):使用循环神经网络(RNN)进行外汇时间序列预测》
循环神经网络(RNN)非常擅长利用过去的信息来预测未来的事件。它们卓越的预测能力已经在各个领域得到了广泛应用,并取得了巨大成功。在本文中,我们将部署RNN模型来预测外汇市场的趋势,展示它们在提高外汇交易预测准确性方面的潜力。

数据科学与机器学习(第24部分):使用常规AI模型进行外汇时间序列预测
在外汇市场中,如果不了解过去的情况,就很难预测未来的趋势。很少有机器学习模型能够通过考虑过去的数据来做出未来预测。在本文中,我们将讨论如何使用经典(非时间序列)人工智能模型来战胜市场。

开发回放系统(第 49 部分):事情变得复杂 (一)
在本文中,我们将把问题复杂化。通过前面文章中展示的内容,我们将开始打开模板文件,以便用户可以使用自己的模板。不过,我将逐步进行修改,因为我还将改进指标,以减少 MetaTrader 5 的负载。

数据科学与机器学习(第23部分):为什么LightGBM和XGBoost能超越许多AI模型?
这些先进的梯度提升决策树技术提供了卓越的性能和灵活性,使其成为金融建模和算法交易的理想选择。了解如何利用这些工具来优化您的交易策略、提高预测准确性,并在金融市场中获得竞争优势。

数据科学与机器学习(第22部分):利用自编码器神经网络实现更智能的交易——从噪声中提炼信号
在瞬息万变的金融市场中,从噪音中分离出有意义的信号对于成功交易至关重要。通过采用复杂的神经网络架构,利用自动编码器发掘市场数据中的隐藏模式,将嘈杂的输入转化为可操作的类型。本文探讨了自动编码器如何改变交易实践,为交易者提供了一个强大的工具,以改善决策制定,并在当今瞬息万变的市场中获得竞争优势。

数据科学和机器学习(第 21 部分):解锁神经网络,优化算法揭秘
深入神经网络的心脏,我们将揭秘神经网络内部所用的优化算法。在本文中,探索解锁神经网络全部潜力的关键技术,把您的模型准确性和效率推向新的高度。

开发交易机器人:Python与MQL5结合(第二部分):模型选择、创建与训练,以及Python自定义测试器
我们继续关于使用Python和MQL5开发交易机器人的系列文章。今天我们将解决模型选择、训练、测试、交叉验证、网格搜索以及模型集成的问题。

您应当知道的 MQL5 向导技术(第 14 部分):以 STF 进行多意向时间序列预测
“时空融合”就是在数据建模中同时使用“空间”和“时间”度量值,主要用在遥感,和一系列其它基于视觉的活动,以便更好地了解我们的周边环境。归功于一篇已发表的论文,我们通过验证它对交易者的潜力,采取一种新颖的方式来运用它。

可视化交易图表(第二部分):数据图形化展示
接下来,我们将从头开始编写一个脚本,以简化交易订单截图的加载过程,便于分析交易入场点。所有关于单个交易的必要信息都将方便地显示在一个图表上,并且该图表具备绘制不同时间框架的能力。

您应当知道的 MQL5 向导技术(第 13 部分):智能信号类 DBSCAN
《基于密度的空间聚类参与噪声应用》是一种无监督的数据分组形式,除 2 个参数外,几乎不需要任何输入参数,比之其它方式,譬如 k-平均,这是一个福音。我们深入研究使用由向导组装的智能系统如何在测试、及最终交易时起到建设性作用。

在MetaTrader 5中集成隐马尔可夫模型
在本文中,我们将展示如何将使用Python训练的隐马尔可夫模型(Hidden Markov Models, HMMs)集成到MetaTrader 5应用程序中。HMM是一种强大的统计工具,用于对时间序列数据进行建模,其中被建模的系统以不可观察(隐藏)的状态为特征。HMM的一个基本前提是,在特定时间处于给定状态的概率取决于该过程在前一个时间点的状态。

开发回放系统(第 47 部分):Chart Trade 项目(六)
最后,我们的 Chart Trade 指标开始与 EA 互动,以交互方式传输信息。因此,在本文中,我们将对该指标进行改进,使其功能足以与任何 EA 配合使用。这样,我们就可以访问 Chart Trade 指标,并像实际连接 EA 一样使用它。不过,我们将以比以前更有趣的方式来实现这一目标。

最负盛名的人工协作搜索算法的改进版本(AXSm)
在这里,我们将探讨 ACS 算法的演变:三种修改旨在改善收敛特性和算法效率。对最领先的优化算法之一进行修订改版。从数据矩阵修改到种群形成的革命性方法。

人工协作搜索算法 (ACS)
人工协作搜索算法ACS (Artificial Cooperative Search) 是一种创新方法,它利用二进制矩阵和基于互利共生与合作的多个动态种群来快速准确地找到最优解。ACS在捕食者与猎物问题上的独特处理方法使其能够在数值优化问题中取得卓越成果。

使用图表可视化交易(第一部分):选择分析时段
在这里,我们将从头开始编写一个脚本,以简化卸载交易截图用于分析交易入场点的过程。能够方便地将所有关于单个交易的必要信息展示在一个图表上,并且该图表可以根据不同时间周期绘制。

开发回放系统(第 46 部分):Chart Trade 项目(五)
厌倦了浪费时间搜索应用程序工作所需的文件吗?在可执行文件中包含所有内容如何?这样,你就不用再去找东西了。我知道很多人都使用这种分发和存储形式,但还有一种更合适的方式。至少在可执行文件的分发和存储方面是这样。这里将介绍的方法非常有用,因为您可以将 MetaTrader 5 本身用作优秀的助手,也可以使用 MQL5。此外,它并不难理解。

改编版 MQL5 网格对冲 EA(第 III 部分):优化简单对冲策略(I)
在第三部分中,我们重新审视了早前开发的简单对冲和简单网格智能系统(EA)。我们的重点转移到通过数学分析和蛮力方式完善简单对冲 EA,旨在实现最优策略用法。本文深入探讨了该策略的数学优化,为在日后文章中探索未来基于编码的优化奠定了基础。

密码锁算法(CLA)
在本文中,我们将重新考虑密码锁,将它们从安全机制转变为解决复杂优化问题的工具。让我们探索密码锁的世界,不再将其视为简单的安全装置,而是作为优化问题新方法的灵感来源。我们将创建一整群“锁”,其中每把锁都代表问题的一个独特解决方案。然后,我们将开发一种算法来“破解”这些锁,并从机器学习到交易系统开发等多个领域中找到最优解。