
MQL5 中的范畴论 (第 9 部分):幺半群(Monoid)— 动作
本文是以 MQL5 实现范畴论系列的延续。 在这里,我们继续将“幺半群 — 动作”当为幺半群变换的一种手段,如上一篇文章所涵盖的内容,从而增加了应用。

时间序列的频域表示:功率谱
在本文中,我们将讨论在频域中分析时间序列的相关方法。 构建预测模型时,强调检验时间序列功率谱的效用 在本文中,我们将讨论运用离散傅里叶变换(dft)在频域中分析时间序列获得的一些实用观点。

神经网络变得轻松(第三十九部分):Go-Explore,一种不同的探索方式
我们继续在强化学习模型中研究环境。 在本文中,我们将见识到另一种算法 — Go-Explore,它允许您在模型训练阶段有效地探索环境。

MQL5 中的范畴论 (第 8 部分):幺半群(Monoids)
本文是以 MQL5 实现范畴论系列的延续。 本期,我们引入幺半群作为域(集合),通过包含规则和幺元,将范畴论自其它数据分类方法分离开来。

您应该知道的 MQL5 向导技术(第 06 部分):傅里叶(Fourier)变换
约瑟夫·傅里叶(Joseph Fourier)引入的傅里叶变换是将复杂的数据波分解构为简单分量波的一种方法。 此功能对交易者来说可能更机敏,本文将对此进行关注。

以 MQL5 实现 ARIMA 训练算法
在本文中,我们将实现一种算法,该算法应用了 Box 和 Jenkins 的自回归集成移动平均模型,并采用了函数最小化的 Powells 方法。 Box 和 Jenkins 表示,大多数时间序列可以由两个框架中之一个或两个来建模。

MQL5 中的范畴论 (第 7 部分):多域、相对域和索引域
范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。

MQL5 中的范畴论 (第 6 部分):单态回拉和满态外推
范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。

利用 MQL5 实现 Janus 因子
加里·安德森(Gary Anderson)基于他称之为Janus因子的理论,开发了一套市场分析方法。 该理论描述了一套可揭示趋势和评估市场风险的指标。 在本文中,我们将利用 mql5 实现这些工具。

种群优化算法:类电磁算法(EM - ElectroMagnetism)
本文讲述在各种优化问题中采用电磁算法(EM - ElectroMagnetism)的原理、方法和可能性。 EM 算法是一种高效的优化工具,能够处理大量数据和多维函数。

数据科学和机器学习(第 14 部分):运用 Kohonen 映射在市场中寻找出路
您是否正在寻找一种可以帮助您驾驭复杂且不断变化的市场的尖端交易方法? Kohonen 映射是一种创新的人工神经网络形式,可以帮助您发现市场数据中隐藏的形态和趋势。 在本文中,我们将探讨 Kohonen 映射的工作原理,以及如何运用它们来开发更智能、更有效的交易策略。 无论您是经验丰富的交易者,还是刚刚起步,您都不想错过这种令人兴奋的新交易方式。

数据科学和机器学习(第 13 部分):配合主成分分析(PCA)改善您的金融市场分析
运用主成分分析(PCA)彻底革新您的金融市场分析! 发现这种强大的技术如何解锁数据中隐藏的形态,揭示潜在的市场趋势,并优化您的投资策略。 在本文中,我们将探讨 PCA 如何为分析复杂的金融数据提供新的视角,揭示传统方法会错过的见解。 发掘 PCA 应用于金融市场数据如何为您带来竞争优势,并帮助您保持领先地位。

MQL5 中的范畴论 (第 2 部分)
范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,提供洞察力,同时希望在交易者的策略开发中进一步运用这一非凡的领域。

数据科学与机器学习(第 11 部分):朴素贝叶斯(Bayes),交易中的概率论
概率交易就像走钢丝一样 — 它需要精确、平衡和对风险的敏锐理解。 在交易世界中,概率就是一切。 这是成功与失败、盈利与亏损的区别。 通过利用概率的力量,交易者可以做出明智的决策,有效地管理风险,并实现他们的财务目标。 故此,无论您是经验丰富的投资者还是交易新手,了解概率都是解锁您的交易潜能的关键。 在本文中,我们将探索令人兴奋的概率交易世界,并向您展示如何将您的交易博弈提升到一个新的水平。

种群优化算法:引力搜索算法(GSA)
GSA 是一种受无生命自然启发的种群优化算法。 万幸在算法中实现了牛顿的万有引力定律,对物理物体相互作用进行建模的高可靠性令我们能够观察到行星系统和星系团的迷人舞蹈。 在本文中,我将研究最有趣和最原始的优化算法之一。 还提供了空间物体运动的模拟器。

艾伦·安德鲁斯和他的时间序列分析技术
艾伦·安德鲁斯(Alan Andrews)是现世代在交易领域最著名的“教育家”之一。 他的“草叉”几乎包含在所有现代报价分析程序当中。 但大多数交易者没机会用过此工具,甚至是其提供的一小部分。 此外,安德鲁斯最初的培训课程不仅包括对草叉的描述(尽管它仍然是主要工具),还包括其它一些有用的结构。 本文提供了对安德鲁斯在其原始课程中教授的奇妙图表分析方法的见解。 (流量焦虑用户)请当心,会有很多图像。

衡量指标信息
机器学习已成为策略制定的流行方法。 虽然人们更强调最大化盈利能力和预测准确性,但处理用于构建预测模型的数据的重要性,仍未受到太多关注。 在本文中,我们研究依据熵的概念来评估预测模型构建的指标的适配性,如 Timothy Masters 的《测试和优调市场交易系统》一书中所述。

MQL5 中的范畴论 (第 2 部分)
范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,吸引评论和研讨,同时希望在交易者的策略开发中进一步在运用这一非凡的领域。