有关MQL5数据分析和统计的文章

icon

许多交易者感兴趣的数学模型和概率规律的文章。数学是技术指标的基础,而且需要 统计,以便分析交易结果并开发策略。

阅读有关模糊逻辑,数字滤波器,市场概况,Kohonen 地图,神经网络和许多其它可用于交易的工具。

添加一个新的文章
最近 | 最佳
更好的程序员(第 02 部分):停止做这 5 件事变为一名成功的 MQL5 程序员

更好的程序员(第 02 部分):停止做这 5 件事变为一名成功的 MQL5 程序员

对于任何想要提高编程职业生涯的人来说,这是一篇必读文章。 本系列文章旨在尽最大可能令您成为最佳程序员,无论您有多少经验。 研讨的思路适用于 MQL5 编程萌新和专业人士。
preview

针对交易的组合数学和概率论(第一部分):基础知识

在本系列文章中,我们将尝试找寻概率论的实际运用来描述交易和定价过程。 在首篇文章中,我们将研究组合数学和概率论的基础知识,并将分析如何在概率论的框架中应用分形的第一个例子。
形态与示例(第一部分):多顶

形态与示例(第一部分):多顶

这是研讨算法交易框架中逆转形态相关的系列文章中的首篇。 我们将从最有趣的形态家族开始,它们源自双顶和双底形态。
preview

聚类分析(第一部分):精通指标线的斜率

聚类分析是人工智能最重要的元素之一。 在本文中,我尝试应用指标斜率的聚类分析来获得阈值,据其判定行情是横盘、亦或跟随趋势。
DoEasy 库中的其他类(第七十二部分):跟踪并记录集合中的图表对象参数

DoEasy 库中的其他类(第七十二部分):跟踪并记录集合中的图表对象参数

在本文中,我将完成图表对象类及其集合的操控。 我还将实现图表属性及其窗口变化的自动跟踪,以及把新参数保存到对象属性。 如此修订允许在未来实现整个图表集合的事件功能。
DoEasy 函数库中的其他类(第七十一部分):图表对象集合事件

DoEasy 函数库中的其他类(第七十一部分):图表对象集合事件

在本文中,我将创建一些跟踪图表对象事件的功能 — 添加/删除品种图表和图表子窗口,以及添加/删除/更改图表窗口中的指标。
DoEasy 库中的其他类(第七十部分):扩展功能并自动更新图表对象集合

DoEasy 库中的其他类(第七十部分):扩展功能并自动更新图表对象集合

在本文中,我将扩展图表对象的功能,并编排图表导航、创建屏幕截图、以及为图表保存和应用模板。 此外,我还将实现图表对象集合、其窗口和其内指标的自动更新。
DoEasy 库中的其他类(第六十九部分):图表对象集合类

DoEasy 库中的其他类(第六十九部分):图表对象集合类

在本文里,我启动图表对象集合类的开发。 该类存储图表对象及其子窗口和指标的集合列表,从而提供操控任何选定图表及其子窗口的能力,亦或同时处理多个图表列表。
组合剥头皮:分析过去的交易来提升未来交易的成效

组合剥头皮:分析过去的交易来提升未来交易的成效

本文所提供的技术讲述,旨在提高任何自动交易系统的有效性。 它简要解释了这个思路,以及它的基本原理、可能性和缺点。
DoEasy 库中的其他类(第六十八部分):图表窗口对象类和图表窗口中的指标对象类

DoEasy 库中的其他类(第六十八部分):图表窗口对象类和图表窗口中的指标对象类

在本文中,我将继续开发图表对象类。 我将添加含有可用指标列表的图表窗口对象列表。
DoEasy 函数库中的其他类(第六十六部分):MQL5.com 信号集合类

DoEasy 函数库中的其他类(第六十六部分):MQL5.com 信号集合类

在本文中,我将针对 MQL5.com 信号服务创建信号集合类,拥有能够管理信号的函数。 此外,我将改进“市场深度”快照对象类,来显示 DOM 的总买卖量。
preview

网格和马丁格尔交易系统中的机器学习。 您敢为其打赌吗?

本文介绍了应用于网格和马丁格尔交易的机器学习技术。 令人惊讶的是,这种方法在全球网络中难觅踪迹。 阅读过本文之后,您将能够创建自己的交易机器人。
自适应算法(第四部分):附加功能和测试

自适应算法(第四部分):附加功能和测试

我将继续采用最少的必要功能来充实算法,并测试结果。 其获利能力十分低下,但文章展示的全自动盈利交易的模型,是在不同的行情基本面及完全不同的金融产品上进行。
DoEasy 函数库中的价格(第六十五部分):市场深度集合并操控 MQL5.com 信号的类

DoEasy 函数库中的价格(第六十五部分):市场深度集合并操控 MQL5.com 信号的类

在本文中,我将创建所有品种的市场深度集合类,并着手开发创建信号对象类来操控 MQL5.com 信号服务的功能。
DoEasy 函数库中的价格(第六十四部分):市场深度,DOM 快照类和快照序列对象

DoEasy 函数库中的价格(第六十四部分):市场深度,DOM 快照类和快照序列对象

在本文中,我将创建两个类(DOM 快照对象类,和 DOM 快照序列对象类),并测试 DOM 数据序列的创建。
preview

神经网络变得轻松(第十一部分):自 GPT 获取

也许,GPT-3 是目前已有语言类神经网络中最先进的模型之一,它的最大变体可包含 1750 亿个参数。 当然,我们不打算在家用 PC 上创建如此庞然之物。 然而,我们可以看看在我们的操作中能够采用哪种体系解决方案,以及如何从中受益。
DoEasy 函数库中的价格(第六十三部分):市场深度及其抽象请求类

DoEasy 函数库中的价格(第六十三部分):市场深度及其抽象请求类

在本文中,我将着手开发操控市场深度的功能。 我还将创建市场深度抽象订单对象,及其衍生类。
DoEasy 函数库中的价格(第六十二部分):实时更新即时报价序列,为操控市场深度做准备

DoEasy 函数库中的价格(第六十二部分):实时更新即时报价序列,为操控市场深度做准备

在本文中,我将实现即时报价数据的实时更新,并为操控市场深度的品种对象类(DOM 本身将在下一篇文章中实现)做准备。
DoEasy 函数库中的时间序列(第六十一部分):品种即时报价序列集合

DoEasy 函数库中的时间序列(第六十一部分):品种即时报价序列集合

鉴于程序在其运行时可能会用到不同的品种,因此应为每个品种创建一个单独的列表。 在本文中,我将把这些列表合并到一个即时报价数据集合。 实际上,这将是一个常规列表,基于指向标准库 CObject 类及其衍生类实例指针的动态数组。
DoEasy 函数库中的时间序列(第六十部分):品种即时报价数据的序列列表

DoEasy 函数库中的时间序列(第六十部分):品种即时报价数据的序列列表

在本文中,我将创建存储单一品种即时报价数据的列表,并在 EA 中检查其创建状态,以及检索所需数据。 每个所用品种各自的即时报价数据列表将来会构成即时报价数据集合。
自适应算法(第三部分): 放弃优化

自适应算法(第三部分): 放弃优化

如果采用基于历史数据的优化方法来选择参数,就不可能得到真正稳定的算法。一个稳定的算法应该知道在任何时候操作任何交易工具时需要哪些参数。它不应该预测或猜测,它应该确定知道。
preview
神经网络变得轻松(第十部分):多目击者关注

神经网络变得轻松(第十部分):多目击者关注

我们以前曾研究过神经网络中的自关注机制。 在实践中,现代神经网络体系结构会采用多个并行的自关注线程来查找序列元素之间的各种依存关系。 我们来研究这种方法的实现,并评估其对整体网络性能的影响。
preview
神经网络变得轻松(第九部分):操作归档

神经网络变得轻松(第九部分):操作归档

我们已经经历了很长一段路,并且函数库中的代码越来越庞大。 这令跟踪所有连接和依赖性变得难以维护。 因此,我建议为先前创建的代码创建文档,并保持伴随每个新步骤进行更新。 正确准备的文档将有助我们看到操作的完整性。
preview
利用 CatBoost 算法寻找外汇市场的季节性模式

利用 CatBoost 算法寻找外汇市场的季节性模式

本文探索了用时间过滤器建立机器学习模型,并讨论了这种方法的有效性。现在,只要简单地指示模型在一周中某一天的某个时间进行交易,就可以消除人为因素。模式搜索可以由单独的算法提供。
preview
直推和主动机器学习中的梯度提升

直推和主动机器学习中的梯度提升

在本文中,我们将探讨利用真实数据的主动机器学习方法,并讨论它们的优缺点。也许你会发现这些方法很有用,并将它们包含在你的机器学习模型库中。直推是由支持向量机(SVM)的共同发明者弗拉基米尔·瓦普尼克(Vladimir Vapnik)提出的。
DoEasy 函数库中的时间序列(第五十七部分):存储一次即时报价数据的对象

DoEasy 函数库中的时间序列(第五十七部分):存储一次即时报价数据的对象

从本文开始,着手创建操控价格数据的函数库功能。 今天,创建一个对象类,存储到达的即时报价的全部价格数据。
开发自适应算法 (第二部分): 提高效率

开发自适应算法 (第二部分): 提高效率

在本文中,我将通过改进先前创建的算法的灵活性来继续本主题的开发。随着分析窗口中烛形数量的增加,或烛形超额阈值百分比的增加,算法变得更加稳定。我不得不做出妥协,并设置一个更大的样本量进行分析或更大的烛形超额百分比。
preview
DoEasy 函数库中的时间序列(第五十八部分):指标缓冲区数据的时间序列

DoEasy 函数库中的时间序列(第五十八部分):指标缓冲区数据的时间序列

关于操控时间序列的主题总结,诸如组织存储、针对存储在指标缓冲区中的数据进行搜索和分类,如此即可在程序里利用函数库创建指标值,并进一步据其执行分析。 函数库的所有集合类的一般概念,能够轻松地在相应的集合中找到必要的数据。 在今天创建的类中,也可分别完成同样功能。
开发自适应算法(第一部分):寻找基本模式

开发自适应算法(第一部分):寻找基本模式

在接下来的系列文章中,我将演示探讨大多数市场因素的自适应算法的开发,以及如何将这些情况系统化,用逻辑描述它们,并在您的交易活动中应用它们。我将从一个非常简单的算法开始,这个算法将逐渐获得理论,并发展成一个非常复杂的项目。
preview
神经网络变得轻松(第八部分):关注机制

神经网络变得轻松(第八部分):关注机制

在之前的文章中,我们已经测试了组织规划神经网络的各种选项。 我们还研究了自图像处理算法中借鉴而来的卷积网络。 在本文中,我建议研究关注机制,它的出现为开发语言模型提供了动力。
使用电子表格建立交易策略

使用电子表格建立交易策略

本文介绍了使用电子表格(Excel、Calc、Google)分析任何策略的基本原则和方法。所得结果与 MetaTrader 5 测试器进行了比较。
preview
DoEasy 函数库中的时间序列(第五十七部分):指标缓冲区数据对象

DoEasy 函数库中的时间序列(第五十七部分):指标缓冲区数据对象

在本文中,开发一个对象,其中包含一个指标的一个缓冲区的所有数据。 这些对象对于存储指标缓冲区的数据序列将是必需的。 在其的辅助下,才有可能对任何指标的缓冲区数据,以及其他类似数据进行排序和比较。
preview
模式搜索的暴力算法(第三部分):新视野

模式搜索的暴力算法(第三部分):新视野

本文延续了暴力算法的主题,并在程序算法中引入了市场分析的新机会,从而加快了分析速度,提高了结果质量。新的添加使得在这种方法中可以看到最高质量的全局模式。
preview
神经网络变得轻松(第七部分):自适应优化方法

神经网络变得轻松(第七部分):自适应优化方法

在之前的文章中,我们利用随机梯度下降法针对网络中的所有神经元按照相同的学习率训练神经网络。 在本文中,我提议着眼于自适应学习方法,该方法能够改变每个神经元的学习率。 我们还将研究这种方法的利弊。
市场及其全局模式中的物理学

市场及其全局模式中的物理学

在本文中,我将尝试测试这样一个假设,即任何对市场了解甚微的系统都可以在全局范围内运行。我不会发明任何理论或模式,但我只会使用已知的事实,逐步将这些事实转化为数学分析的语言。
preview
基于暴力算法的 CatBoost 模型高级重采样与选择

基于暴力算法的 CatBoost 模型高级重采样与选择

本文描述了一种可能的数据转换方法,旨在提高模型的通用性,并讨论了 CatBoost 模型的采样和选择。
preview
DoEasy 函数库中的时间序列(第五十五部分):指标集合类

DoEasy 函数库中的时间序列(第五十五部分):指标集合类

本文继续开发指标对象类及其集合。 为每个指标对象创建其描述和正确的集合类,从而实现无错存储,并从集合列表中获取指标对象。
preview
手工图表和交易工具包(第二部分)。 图表图形绘图工具

手工图表和交易工具包(第二部分)。 图表图形绘图工具

这是该系列的下一篇文章,在其中我展示了如何创建一个函数库来,从而看便利地用键盘快捷键手动绘制图表图形。 所用工具包括直线及其组合。 在这一部分中,我们将查看如何在绘图工具里应用第一部分中讲述的函数。 该函数库可连接到任何 EA 或指标,这将大大简化绘图任务。 此方案未使用外部 dll,而所有命令都是由内置 MQL 工具实现的。
preview
模式搜索的暴力方法(第二部分):深入

模式搜索的暴力方法(第二部分):深入

在本文中,我们将继续讨论暴力方法。我将尝试使用我的应用程序的新改进版本来更好地解释这种模式。我还将尝试使用不同的时间间隔和时间框架来找出稳定性的差异。
preview
神经网络变得轻松(第六部分):神经网络学习率实验

神经网络变得轻松(第六部分):神经网络学习率实验

我们之前已研究过各种类型的神经网络及其实现。 在所有情况下,训练神经网络时都使用梯度下降法,为此我们需要选择学习率。 在本文中,我打算通过示例展示正确选择学习率的重要性,及其对神经网络训练的影响。