迁移至 MQL5 Algo Forge(第 2 部分):使用多个存储库
在本文中,我们将探讨在公共存储库中组织项目源代码存储的一种可能的方法。我们将把代码分发到不同的分支,为项目开发建立清晰方便的规则。
在 MQL5 中创建交易管理面板(第九部分):代码组织(三):通信模块
欢迎参与本次深度讨论,我们将揭示 MQL5 界面设计的最新进展,着重介绍重新设计的通信面板,并继续我们关于使用模块化原则构建新管理面板的系列文章。我们将逐步开发 CommunicationsDialog 类,并详细解释如何从 Dialog 类进行继承。此外,在我们的开发过程中,还将利用数组(arrays)和 ListView 类。获取可行的方案,以提升您的 MQL5 开发技能——请阅读本文,并在评论区加入讨论!
MQL5 交易工具包(第 7 部分):使用最近取消的挂单函数扩展历史管理 EX5 库
了解如何完成历史管理 EX5 库中最终模块的创建,重点关注负责处理最近取消的挂单的函数。这将为您提供使用 MQL5 有效检索和存储与已取消挂单相关的关键详细信息的工具。
神经网络实践:绘制神经元
在本文中,我们将构建一个基本神经元。虽然它看起来很简单,许多人可能会认为这段代码完全微不足道,毫无意义,但我希望你在学习这个简单的神经元草图时能玩得开心。不要害怕修改代码,完全理解它才是目标。
从基础到中级:递归
在本文中,我们将探讨一个非常有趣且颇具挑战性的编程概念,尽管应该非常谨慎地对待它,因为它的误用或误解会将相对简单的程序变成不必要的复杂程序。但是,当正确使用并完全适应同样合适的情况时,递归成为解决问题的绝佳盟友,否则这些问题会更加费力和耗时。此处提供的材料仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
市场模拟(第二部分):跨期订单(二)
与上一篇文章中所做的不同,这里我们将使用 EA 交易来测试选择选项。虽然这还不是最终的解决方案,但目前已经足够了。在本文的帮助下,您将能够理解如何实现一种可能的解决方案。
您应当知道的 MQL5 向导技术(第 31 部分):选择损失函数
损失函数是机器学习算法的关键量值,即量化给定参数集相比预期目标的性能来为训练过程提供反馈。我们在 MQL5 自定义向导类中探索该函数的各种格式。
精通日志记录(第五部分):通过缓存和轮转优化处理程序
本文通过为处理器添加格式化器、引入用于管理执行周期的 CIntervalWatcher 类、以及采用缓存和文件轮转进行优化,并辅以性能测试和实际示例,从而改进了该日志库。通过这些改进,我们确保了一个高效、可扩展且能适应不同开发场景的日志系统。
财经建模中合成数据的生成式对抗网络(GAN)(第 2 部分):创建测试合成品种
在本文中,我们将利用生成式对抗网络(GAN)创建一个合成品种,涉及生成逼真的财经数据,即模仿真实市场金融产品(例如 EURUSD)的行为。GAN 模型从历史市场数据中学习形态和波动性,并创建拥有相似特征的合成价格数据。
从基础到中级:模板和类型名称(二)
本文解释了如何处理您可能遇到的最困难的编程情况之一:在同一个函数或过程模板中使用不同的类型。尽管我们大部分时间只关注函数,但这里介绍的所有内容都是有用的,并且可以应用于过程。
辩证搜索(DA)
本文介绍了辩证算法(DA),这是一种受辩证法哲学概念启发的新的全局优化方法。该算法利用了人口中独特的划分,将其分为投机思想者和实践思想者。测试表明,在低维问题上,性能令人印象深刻,高达 98%,整体效率为 57.95%。本文解释了这些度量,并详细描述了算法和不同类型函数的实验结果。
MQL5 简介(第 17 部分):构建趋势反转 EA 交易
本文教初学者如何在 MQL5 中构建一个基于图表形态识别的 EA 交易系统,该系统利用趋势线突破和反转进行交易。通过学习如何动态检索趋势线值并将其与价格走势进行比较,读者将能够开发出能够识别和交易图表形态(如上升和下降趋势线、通道、楔形、三角形等)的 EA 交易。
从基础到中级:数组和字符串(二)
在本文中,我将展示,尽管我们仍处于编程的一个非常基本的阶段,但我们已经可以实现一些有趣的应用程序。在这种情况下,我们将创建一个相当简单的密码生成器。通过这种方式,我们将能够应用到目前为止已经解释过的一些概念。此外,我们将研究如何为一些具体问题制定解决方案。
在训练中激活神经元的函数:快速收敛的关键?
本文研究了在神经网络训练背景下,不同激活函数与优化算法之间的相互作用。我们特别关注了经典的 ADAM 算法及其种群版本在处理多种激活函数(包括振荡的 ACON 和 Snake 函数)时的表现。通过使用一个极简的 MLP (1-1-1) 架构和单个训练样本,我们将激活函数对优化的影响与其他因素隔离开来。文章提出了一种通过激活函数边界来管理网络权重的方法,以及一种权重反射机制,这有助于避免训练中的饱和和停滞问题。
使用 MetaTrader 5 Python 构建类似 MQL5 的交易类
MetaTrader 5 Python 包提供了一种使用 Python 语言为 MetaTrader 5 平台构建交易应用程序的简便方法。虽然它是一个强大而有用的工具,但在创建算法交易解决方案方面,该模块不如 MQL5 编程语言那么容易。在本文中,我们将构建类似于 MQL5 中提供的交易类,以创建类似的语法,使在 Python 中创建交易机器人比在 MQL5 中更容易。
在MQL5中创建交易管理员面板(第十一部分):现代化功能通信接口(1)
今天,我们将聚焦于升级通信面板的消息交互界面,使其符合现代高性能通信应用的标准。这一改进将通过更新CommunicationsDialog类来实现。欢迎加入本文的探讨与讨论,我们将共同剖析关键要点,并规划使用MQL5推进界面编程的下一步方向。
从基础到中级:模板和类型名称(三)
在本文中,我们将讨论该主题的第一部分,这对初学者来说并不容易理解。为了避免更加困惑并正确解释这个话题,我们将把解释分为几个阶段。我们将把这篇文章用于第一阶段。然而,尽管在本文末尾,我们似乎已经陷入僵局,但事实上,我们将朝着另一种情况迈出一步,这将在下一篇文章中得到更好的理解。
日志记录精通指南(第三部分):探索日志处理器(Handlers)实现方案
在本文中,我们将探索日志库中"处理器"(handlers)的概念,理解其工作原理,并创建三种基础实现:控制台、数据库和文件。我们将覆盖从处理器的基本结构到实际测试,为后续文章中的完整功能实现奠定基础。
MQL5交易策略自动化(第十六部分):基于结构突破(BoS)价格行为的午夜区间突破策略
本文将介绍如何在MQL5中实现午夜区间突破结合结构突破(BoS)价格行为策略自动化,并详细说明突破检测与交易执行的代码逻辑。我们为入场、止损和止盈设定了精确的风险参数。包含回测与优化方法,助力实战交易。
人工部落算法(ATA)
文章提供了 ATA 优化算法关键组成部分和创新的详细讨论,其为一种进化方法,具有独特的双重行为系统,可根据状况进行调整。ATA 结合了个体和社会学习,同时使用交叉进行探索和迁徙,从而在陷入局部最优时找到解。
MQL5 交易工具包(第 8 部分):如何在代码库中实现和使用历史管理 EX5 库
在本系列的最后一篇文章中,我们将探讨如何轻松地将历史管理 EX5 库导入到 MQL5 源代码中,以处理 MetaTrader 5 账户中的交易历史记录。通过 MQL5 中简单的单行函数调用,可以高效管理和分析交易数据。此外,您还将学习如何创建不同的交易历史分析脚本,并开发基于价格的 EA 交易,作为实际用例示例。该示例 EA 利用价格数据和历史管理 EX5 库做出明智的交易决策、调整交易量,并根据先前已平仓的交易实施恢复策略。
交易中的神经网络:基于 ResNeXt 模型的多任务学习
基于 ResNeXt 的多任务学习框架,优化了金融数据分析,可参考其高维度、非线性、和时间依赖性。使用分组卷积和专用头,令模型能有效从输入数据中提取关键特征。
在 MQL5 中创建交易管理员面板(第十部分):基于外部资源的界面
今天,我们将深入挖掘 MQL5 的潜力,利用外部资源(例如 BMP 格式的图片)为交易管理面板打造独具风格的主界面。文中演示的策略在打包多种资源(包括图片、声音等)以实现高效分发时尤为实用。欢迎随我们一起探讨,如何利用这些功能为我们的 New_Admin_Panel EA 实现现代、美观的界面设计。
MQL5 简介(第 16 部分):利用技术图表形态构建 EA 交易
本文向初学者介绍如何构建一个 MQL5 EA 交易,该系统可以识别和交易经典的技术图表形态 —— 头肩顶形态。它涵盖了如何利用价格行为来检测形态,如何在图表上绘制形态,如何设置入场点、止损点和止盈点,以及如何根据形态自动执行交易。
精通日志记录(第六部分):数据库日志存储方案
本文探讨如何利用数据库以结构化、可扩展的方式存储日志。内容涵盖基础概念、核心操作、MQL5中数据库处理器的配置与实现。最后验证结果,并阐述该方法在优化与高效监控方面的优势。
开发多币种 EA 交易(第 23 部分):整理自动项目优化阶段的输送机(二)
我们的目标是创建一个系统,用于自动定期优化最终 EA 中使用的交易策略。随着系统的发展,它变得越来越复杂,因此有必要不时地将其视为一个整体,以确定瓶颈和次优解决方案。
交易中的神经网络:层次化双塔变换器(终篇)
我们继续构建 Hidformer 层次化双塔变换器模型,专为分析和预测复杂多变量时间序列而设计。在本文中,我们会把早前就开始的工作推向逻辑结局 — 我们将在真实历史数据上测试模型。
交易中的神经网络:配备概念强化的多智代系统(FinCon)
我们邀您探索 FinCon 框架,这是一款基于大语言模型(LLM)的多智代系统。该框架利用概念性词汇强化来提升决策制定和风险管理,能在多种金融任务中有高效表现。
在交易图表上通过资源驱动的双三次插值图像缩放技术创建动态 MQL5 图形界面
本文探讨了动态 MQL5 图形界面,利用双三次插值技术在交易图表上实现高质量的图像缩放。我们详细介绍了灵活的定位选项,支持通过自定义偏移量实现动态居中或位置定位。
MQL5交易工具(第二部分):为交互式交易助手添加动态视觉反馈
本文通过引入拖拽面板功能和悬停交互效果,对交易助手工具进行全面升级,使界面操作更直观且响应更迅速。我们优化了工具的实时订单验证机制,确保交易参数能根据市场价格动态校准。同时,我们通过回测验证了这些改进的可靠性。
纯 MQL5 货币对强弱指标
我们将在 MQL5 中开发货币强势分析的专业指标。这本分步指南将向你展示如何为 MetaTrader 5 开发一款功能强大的交易工具,该工具带有可视化仪表板。您将学习如何计算多个时间周期(H1、H4、D1)内货币对的强度,实现动态数据更新,并创建用户友好的界面。
MQL5开发专属调试与性能分析工具(第一部分):高级日志记录
学习如何为MQL5实现一个强大的自定义日志框架,该框架超越简单的Print()语句,支持日志严重级别、多输出处理器和自动文件轮转——所有功能均可动态配置。将单例CLogger与ConsoleLogHandler(控制台日志处理器)和FileLogHandler(文件日志处理器)集成,在“Experts”选项卡和持续的文件中捕获带时间戳的内容日志。通过清晰、可定制的日志格式和集中控制,简化智能交易系统(EA)的调试与性能跟踪工作。
皇冠同花顺优化(RFO)
最初的皇冠同花顺优化算法提供了一种解决优化问题的新方法,受到扑克牌原则启发,以基于扇区的方式取代了传统的遗传二进制编码算法。RFO 展现出简化的基本原理如何带来高效、且实用的优化方法。文章呈现了一份详细的算法分析和测试结果。
开发多币种 EA 交易(第 22 部分):开始向设置的热插拔过渡
如果要自动进行周期性优化,我们需要考虑自动更新交易账户上已经运行的 EA 设置。这样一来,我们就可以在策略测试器中运行 EA,并在单次运行中更改其设置。