神经网络变得简单(第 79 部分):在状态上下文中的特征聚合查询(FAQ)
在上一篇文章中,我们领略了一种从图像中检测对象的方法。不过,处理静态图像与处理动态时间序列(例如我们所分析的价格动态)有些不同。在本文中,我们将研究检测视频中对象的方法,其可在某种程度上更接近我们正在解决的问题。
开发回放系统(第 74 部分):新 Chart Trade(一)
在本文中,我们将修改本系列关于 Chart Trade 中显示的最后一段代码。这些变化对于使代码适应当前的回放/模拟系统模型是必要的。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
从基础到中级:数组(四)
在本文中,我们将看看如何做一些与 C、C++ 和 Java 等语言中实现的非常相似的事情。我说的是在函数或过程中传递几乎无限数量的参数。虽然这似乎是一个相当高级的主题,但在我看来,任何理解了前面概念的人都可以很容易地实现这里展示的内容。只要它们真的被正确理解。
金融建模中合成数据的生成式对抗网络(GAN)(第 1 部分):金融建模中的 GAN 与合成数据概述
本文向交易者介绍产生合成金融数据的生成式对抗网络(GAN),解决模型训练中的数据限制。它涵盖了 GAN 基础知识、python 和 MQL5 代码实现,以及实际的金融应用,令交易者能够通过合成数据强化模型的准确性和健壮性。
在Python中使用Numba对交易策略进行快速测试
本文实现了一个快速策略测试器,它使用Numba对机器学习模型进行快速策略测试。它的速度比纯 Python 策略回测器快 50 倍。作者推荐使用该库来加速数学计算,尤其是那些涉及循环的计算。
突破机器学习的局限(第一部分):缺乏可互操作的度量指标
无论以何种形式构建可靠的人工智能(AI)交易策略,都有一种强大且普遍存在的力量,正悄然地侵蚀着我们社区的集体努力,本文提到,我们所面临的部分问题,源于对“最优实践”的盲目遵循。通过为读者提供基于现实市场的简单证据,我们说明为何必须摒弃这种做法,转而采用特定领域内的最优实践,这样一来,我们的社区才有可能重振AI的潜在力量。
您应当知道的 MQL5 向导技术(第 47 部分):配合时态差异的强化学习
时态差异是强化学习中的另一种算法,它基于智顾训练期间预测和实际奖励之间的差异更新 Q-值。它专门驻守更新 Q-值,而不介意它们的状态-动作配对。因此,我们考察如何在向导汇编的智能系统中应用这一点,正如我们在之前文章中所做的那样。
Connexus观察者模式(第8部分):添加一个观察者请求
在本系列文章的最后一篇中,我们探讨了观察者模式(Observer Pattern) 在Connexus库中的实现,同时对文件路径和方法名进行了必要的重构优化。该系列文章完整地记录了Connexus库的开发过程——这是一个专为简化复杂应用中的HTTP通信而设计的工具库。
利用 MQL5 经济日历进行交易(第四部分):在仪表盘中实现实时新闻更新
本文通过实现实时新闻更新来增强我们的经济日历仪表盘,以保持市场信息的时效性和可操作性。我们在 MQL5 中集成了实时数据获取技术,以持续更新仪表盘上的事件,从而提升界面的响应速度。此更新优化确保我们可以直接从仪表盘获取最新的经济新闻,从而基于最新数据优化交易决策。
开发回放系统(第 77 部分):新 Chart Trade(四)
在本文中,我们将介绍创建通信协议时需要考虑的一些措施和预防措施。这些都是非常简单明了的事情,所以我们在本文中不会详细介绍。但要了解会发生什么,您需要了解文章的内容。
您应当知道的 MQL5 向导技术(第 37 部分):配以线性和 Matérn 内核的高斯过程回归
线性内核是机器学习中,针对线性回归和支持向量机所用的同类中最简单的矩阵。另一方面,Matérn 内核是我们在之前的文章中讲述的径向基函数的更普遍版本,它擅长映射不如 RBF 假设那样平滑的函数。我们构建了一个自定义信号类,即利用两个内核来预测做多和做空条件。
在MQL5中创建交易管理面板(第九部分):代码组织(5):分析面板(AnalyticsPanel)类
在本文中,我们将探讨如何获取实时市场数据和交易账户信息,执行各种计算,并将结果展示在自定义面板上。为此,我们将深入开发一个分析面板(AnalyticsPanel)类,该类封装了所有这些功能,包括面板创建功能。这项工作是我们正在进行的新建管理面板智能交易系统(EA)扩展工作的一部分,旨在运用模块化设计原则和代码组织的最佳实践来引入高级功能。
因果网络分析(CNA)、随机模型最优控制(SMOC)和纳什博弈论结合深度学习的示例
我们将向之前发布的文章中的三个例子里加入深度学习,并与之前的版本进行比较。目标是学习如何将深度学习(DL)应用于其他EA。
使用经典机器学习方法预测汇率:逻辑回归(logit)模型和概率回归(probit)模型
本文尝试构建一款用于预测汇率报价的EA。该算法以经典分类模型——逻辑回归与概率回归为基础。并利用似然比检验作为交易信号的筛选器。
从基础到中级:FOR 语句
在本文中,我们将了解 FOR 语句最基本的概念。了解这里将显示的所有内容非常重要。与我们迄今为止讨论的其他语句不同,FOR 语句有一些怪癖,很快就会变得非常复杂。所以不要让这样的事情堆积起来,尽快开始学习和练习。
价格行为分析工具包开发(第二十部分):外部资金流(4)——相关性路径探索器
作为价格行为分析工具包开发系列的一部分,相关性路径探索器为理解货币对动态提供了一种全新方法。该工具可自动收集和分析数据,深入分析诸如欧元兑美元(EUR/USD)和英镑兑美元(GBP/USD)等货币对之间的相互作用。借助其实用、实时的信息,增强你的交易策略,助您更有效地管理风险并发现机会。
从新手到专家:自动几何分析系统
几何形态为交易者提供了一种简洁的方式来解读价格走势。许多分析师手工绘制趋势线、矩形和其他形状,然后根据他们看到的形态做出交易决策。在本文中,我们探索了一种自动化的替代方案:利用 MQL5 来检测和分析最流行的几何形态。我们将分解方法论,讨论实现细节,并强调自动形态识别如何提高交易者的市场洞察力。
您应当知道的 MQL5 向导技术(第 54 部分):搭配混合 SAC 和张量的强化学习
软性参与者-评论者是一种强化学习算法,我们曾在之前的系列文章中考察过 Python 和 ONNX,作为高效的网络训练方式。我们重新审视该算法,意在利用张量,即 Python 中常用的计算图形。
市场模拟(第三部分):性能问题
我们经常需要后退一步,然后继续前进。在本文中,我们将展示所有必要的更改,以确保鼠标和 Chart Trade 指标不会中断。作为奖励,我们还将介绍未来将广泛使用的其他头文件中发生的其他更改。
开发回放系统(第 71 部分):取得正确的时间(四)
在本文中,我们将研究如何实现上一篇文章中所示的与回放/模拟服务相关的内容。就像生活中的许多其他事情一样,问题必然会出现。这次的情况也不例外。在这篇文章中,我们将继续改进。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
交易中的神经网络:降低锐度强化变换器效率(SAMformer)
训练变换器模型需要大量数据,并且往往很困难,因为模型不擅长类推到小型数据集。SAMformer 框架通过避免糟糕的局部最小值来帮助解决这个问题。即使在有限的训练数据集上,也能提升模型的效率。
从基础到中级:浮点数
本文简要介绍浮点数的概念。由于这篇文章非常复杂,请仔细阅读,不要期望很快掌握浮点数系统。随着时间的推移,当你获得使用它的经验时,它才会变得清晰。但本文将帮助您理解为什么您的应用程序有时会产生与预期不同的结果。
开发回放系统(第 60 部分):玩转服务(一)
很长一段时间以来,我们一直在研究指标,但现在是时候让服务重新工作了,看看图表是如何根据提供的数据构建的。然而,由于整个事情并没有那么简单,我们必须注意了解前方等待我们的是什么。
重新定义MQL5与MetaTrader 5指标
MQL5中一种创新的指标信息收集方法,使开发者能够向指标传递自定义输入参数以进行即时计算,从而实现了更灵活、更高效的数据分析。这种方法在算法交易中尤为实用,因为它能突破传统限制,增强对指标所处理信息的掌控力。
Connexus助手(第五部分):HTTP方法和状态码
在本文中,我们将了解HTTP方法和状态码,这是网络上客户端与服务器之间通信的两个非常重要的部分。了解每种方法的作用,可以让您更精确地发出请求,告知服务器您想要执行的操作,从而提高效率。
MQL5 简介(第 15 部分):构建自定义指标的初学者指南(四)
在本文中,您将学习如何在 MQL5 中构建价格行为指标,重点关注低点 (L)、高点 (H)、更高的低点 (HL)、更高的高点 (HH)、更低的低点 (LL) 和更低的高点 (LH) 等关键点,以分析趋势。你还将学习如何识别溢价和折价区域,标记 50% 回撤位,以及如何使用风险回报比来计算利润目标。文章还介绍了如何根据趋势结构确定入场点、止损 (SL) 和止盈 (TP) 水平。
Connexus请求解析(第六部分):创建HTTP请求与响应
在Connexus库系列文章的第六篇中,我们将聚焦于完整的HTTP请求,涵盖构成请求的各个组件。我们将创建一个表示整个请求的类,这将有助于将之前创建的各个类整合在一起。
从基础到中级:数组(一)
本文是迄今为止所讨论的内容与新的研究阶段之间的过渡。要理解这篇文章,您需要阅读前面的文章。此处提供的内容仅用于教育目的。在任何情况下,除了学习和掌握所提出的概念外,都不应出于任何目的使用此应用程序。
交易中的神经网络:搭配区段注意力的参数效率变换器(终篇)
在之前的工作中,我们讨论了 PSformer 框架的理论层面,其中包括经典变换器架构的两大创新:参数共享(PS)机制,以及时空区段注意力(SegAtt)。在本文中,我们继续实现所提议方式的 MQL5 版本。
创建MQL5交易管理员面板(第九部分):代码组织(1)
这次将深入探讨处理大型代码库时遇到的挑战。我们将探索在MQL5中进行代码组织的最佳实践,并采用一种实用方法来提升我们交易管理面板源代码的可读性和可扩展性。此外,我们致力于开发可复用的代码组件,这些组件有可能为其他开发者在其算法开发过程中带来益处。请继续阅读并参与讨论。
数据科学和机器学习(第 33 部分):MQL5 中的 Pandas 数据帧,为机器学习收集数据更加容易
当与机器学习模型共事时,确保用于训练、验证和测试的数据一致性必不可少。在本文中,我们将创建我们自己的 MQL5 版本 Pandas 函数库,确保使用统一方式来处理机器学习数据;这样做是为确保在 MQL5 内部和外部应用相同的数据,其中大部分发生在训练阶段。
基于Python与MQL5的特征工程(第三部分):价格角度(2)——极坐标(Polar Coordinates)法
在本文中,我们将第二次尝试将任意市场的价格水平变化转化为对应的角度变化。此次,我们选择了比首次尝试更具数学复杂性的方法,而获得的结果表明,这一调整或许是正确的决策。今天,让我们共同探讨如何通过极坐标以有意义的方式计算价格水平变化所形成的角度,无论您分析的是何种市场。
从新手到专家:对K线进行编程
在本文中,我们将迈出 MQL5 编程的第一步,即使是完全零基础的初学者也能上手。我们将向您展示,如何将熟悉的 K线形态 转换为一个功能完备的自定义指标。K线形态之所以有价值,是因为它们反映了真实的价格行为,并预示着市场的转变。与其手动扫描图表——这种方法容易出错且效率低下——我们将讨论如何通过一个指标来自动化这个过程,该指标会自动识别并标记出这些形态。在此过程中,我们将探讨一些关键概念,例如索引、时间序列、平均真实波幅(用于在多变的市场波动性中提高准确性),以及如何开发一个可自定义、可复用的 K线形态库,以便在未来的项目中使用。
斐波那契(Fibonacci)数列在外汇交易中的应用(第一部分):探究价格与时间的关系
市场如何遵循基于斐波那契数列的关系?在斐波那契数列中,每个后续数字都等于前两个数字之和(1, 1, 2, 3, 5, 8, 13, 21……),该数列不仅描述了兔子种群的增长情况。我们将考虑毕达哥拉斯的假设,即世间万物都遵循某种数字关系……