Интеграция MQL5: Python
Python — известный и популярный язык программирования со множеством функций, особенно в областях финансов, науки о данных, искусственного интеллекта и машинного обучения. Python — мощный инструмент, который может быть полезен и в трейдинге. MQL5 позволяет нам использовать этот мощный язык для эффективного достижения наших целей. В этой статье мы рассмотрим некоторые базовые сведения о Python и расскажем, как его можно интегрировать в MQL5.
Фибоначчи на Форекс (Часть I): Проверяем отношения цены и времени
Как рынок ходит по отношениям, основанным на числах Фибоначчи? Эта последовательность, где каждое следующее число равно сумме двух предыдущих (1, 1, 2, 3, 5, 8, 13, 21...), не только описывает рост популяции кроликов. Рассмотрим гипотезу Пифагора о том, что все в мире подчиняется определенным соотношениям чисел...
Упрощаем торговлю на новостях (Часть 3): Совершаем сделки
В этой статье наш советник новостной торговли начнет открывать сделки на основе экономического календаря, хранящегося в нашей базе данных. Кроме того, мы улучшим графику советника, чтобы отображать более актуальную информацию о предстоящих событиях экономического календаря.
Разрабатываем мультивалютный советник (Часть 22): Начало перехода на горячую замену настроек
Если мы взялись за автоматизацию проведения периодической оптимизации, то надо позаботиться и об автоматическом обновлении настроек советников, которые уже работают на торговом счёте. Также это должно позволять запускать советник в тестере стратегий и менять его настройки в рамках одного прохода.
Алгоритм поиска по кругу — Circle Search Algorithm (CSA)
В статье представлен новый метаэвристический алгоритм оптимизации CSA (Circle Search Algorithm), основанный на геометрических свойствах окружности. Алгоритм использует принцип движения точек по касательным для поиска оптимального решения, сочетая фазы глобального исследования и локальной эксплуатации.
Анализируем двоичный код цен на бирже (Часть II): Преобразуем в BIP39 и пишем GPT модель
Продолжаем попытки дешифровать движения цен... Как насчет лингвистического анализа "словаря рынка", который мы получим, преобразовав бинарный код цены в BIP39? В этой статье мы углубимся в инновационный подход к анализу биржевых данных и рассмотрим, как современные методы обработки естественного языка могут быть применены к языку рынка.
MQL5-советник, интегрированный в Telegram (Часть 2): Отправка сигналов из MQL5 в Telegram
В этой статье мы создадим MQL5-советник, интегрированный с Telegram, который отправляет в мессенджер сигналы пересечения скользящих средних. Мы подробно опишем процесс генерации торговых сигналов на основе пересечений скользящих средних, реализуем необходимый код на языке MQL5 и обеспечим бесперебойную работу интеграции. В результате мы получим систему, которая отправляет торговые оповещения в реальном времени непосредственно в групповой чат Telegram.
Алгоритм оптимизации Ройял Флеш — Royal Flush Optimization (RFO)
Авторский алгоритм Royal Flush Optimization предлагает новый взгляд на решение задач оптимизации, заменяя классическое бинарное кодирование генетических алгоритмов на секторный подход, вдохновленный принципами покера. RFO демонстрирует, как упрощение базовых принципов может привести к созданию эффективного и практичного метода оптимизации. В статье представлен детальный анализ алгоритма и результаты тестирования.
MQL5-советник, интегрированный в Telegram (Часть 1): Отправка сообщений из MQL5 в Telegram
В этой статье мы создадим советник на языке MQL5, отправляющий сообщения в Telegram с помощью бота. Мы настроим необходимые параметры, включая API-токен бота и идентификатор чата, а затем выполним HTTP-запрос POST для доставки сообщений. Затем мы обработаем ответ, чтобы обеспечить успешную доставку, и устраним возможные ошибки.
Биологический нейрон для прогнозирования финансовых временных рядов
Выстраиваем биологически верную систему нейронов для прогнозирования временных рядов. Внедрение плазмоподобной среды в архитектуру нейронной сети создало своеобразный "коллективный разум", где каждый нейрон влияет на работу системы не только через прямые связи, но и посредством дальнодействующих электромагнитных взаимодействий. Как покажет себя нейронная система моделирования мозга на рынке?
Диалектический поиск — Dialectic Search (DA)
Представляем Диалектический Алгоритм (DA) — новый метод глобальной оптимизации, вдохновленный философской концепцией диалектики. Алгоритм использует уникальное разделение популяции на спекулятивных и практических мыслителей. Тестирование показывает впечатляющую производительность до 98% в задачах малой размерности и общую эффективность 57.95%. Статья объясняет эти показатели и представляет детальное описание алгоритма и результаты экспериментов на различных типах функций.
Интеграция MQL5 с пакетами обработки данных (Часть 1): Расширенный анализ данных и статистическая обработка
Интеграция обеспечивает бесперебойный рабочий процесс, при котором необработанные финансовые данные из MQL5 можно импортировать в пакеты обработки данных, такие как Jupyter Lab, для расширенного анализа, включая статистическое тестирование.
Эволюционный торговый алгоритм обучения с подкреплением и вымиранием убыточных особей (ETARE)
Представляем инновационный торговый алгоритм, сочетающий эволюционные алгоритмы с глубоким обучением с подкреплением для торговли на Форекс. Алгоритм использует механизм вымирания неэффективных особей, для оптимизации торговой стратегии.
Алгоритм эволюционного путешествия во времени — Time Evolution Travel Algorithm (TETA)
Мой авторский алгоритм. В этой статье представлен Алгоритм Эволюционного Путешествия во Времени (TETA), вдохновлённый концепцией параллельных вселенных и потоков времени. Основная идея алгоритма заключается в том, что, хотя путешествие во времени в привычном понимании невозможно, мы можем выбирать последовательность событий, которые приводят к различным реальностям.
Биржевые данные без посредников: подключаем MetaTrader 5 к MOEX через ISS API
В статье предложено решение для интеграции MetaTrader 5 с веб-сервисом MOEX ISS. Прилагаются утилиты для автоматической генерации исходных кодов на основе справочника API и индекса основных элементов сервиса.
Построение модели ограничения тренда свечей (Часть 7): Улучшаем нашу модель для разработки советника
В этой статье мы подробно рассмотрим подготовку нашего индикатора для разработки советника. В ходе обсуждения будут рассмотрены дальнейшие усовершенствования текущей версии индикатора с целью повышения его точности и функциональности. Кроме того, мы внедрим новые функции, которые будут отмечать точки выхода, устранив ограничение предыдущей версии, которая определяла только точки входа.
Использование JSON Data API в MQL-проектах
Представьте, что вы можете использовать данные, которых нет в MetaTrader. Обычно вы получаете информацию только от индикаторов, основанных на анализе цен и техническом анализе. Теперь представьте, что у вас есть доступ к данным, которые выведут ваши торговые возможности на новый уровень. Вы можете значительно увеличить мощность платформы MetaTrader, если объедините её возможности с результатами работы других программ, методов макроанализа и ультрасовременных инструментов через API. В этой статье мы расскажем, как использовать API, и представим полезные и ценные API-сервисы.
Разрабатываем мультивалютный советник (Часть 21): Подготовка к важному эксперименту и оптимизация кода
Для дальнейшего продвижения хорошо было бы посмотреть, можем ли мы улучшить результаты, периодически выполняя повторную автоматическую оптимизацию и генерирование нового советника. Камнем преткновения во многих спорах об использовании оптимизации параметров является вопрос о том, насколько долго можно использовать полученные параметры для торговли в будущем периоде с сохранением основных показателей прибыльности и просадки на заданных уровнях. И можно ли вообще это делать?
Построение модели для ограничения диапазона сигналов по тренду (Часть 6): Интеграция "всё в одном"
Одной из основных проблем является управление несколькими окнами графиков одной пары, на которых запущена одна и та же программа с разными функциями. Давайте обсудим, как объединить несколько интеграций в одну основную программу. Кроме того, мы поделимся идеями по настройке программы для вывода в журнал и рассмотрим успешную трансляцию сигнала в интерфейсе графика.
Индикатор силы и направления тренда на 3D-барах
Рассмотрим новый подход к анализу рыночных трендов, основанный на трехмерной визуализации и тензорном анализе рыночной микроструктуры.
Разработка интерактивного графического пользовательского интерфейса на MQL5 (Часть 1): Создание панели
В статье рассматриваются основные этапы создания и реализации панели графического пользовательского интерфейса (Graphical User Interface, GUI) с помощью языка MetaQuotes Language 5 (MQL5). Пользовательские панели утилит повышают качество взаимодействия с системой при торговле, упрощая типовые задачи и визуализируя важную торговую информацию. Создавая пользовательские панели, трейдеры могут оптимизировать рабочий процесс и сэкономить время при торговых операциях.
Алгоритм черной дыры — Black Hole Algorithm (BHA)
Алгоритм черной дыры (Black Hole Algorithm, BHA) использует принципы гравитации черных дыр для оптимизации решений. В статье мы рассмотрим, как BHA притягивает лучшие решения, избегая локальных экстремумов, и почему этот алгоритм стал мощным инструментом для решения сложных задач. Узнайте, как простые идеи могут привести к впечатляющим результатам в мире оптимизации.
Многомодульный торговый робот на Python и MQL5 (Часть I): Создание базовой архитектуры и первых модулей
Разрабатываем модульную торговую систему, объединяющую Python для анализа данных с MQL5 для исполнения сделок. Четыре независимых модуля параллельно следят за разными аспектами рынка: объемами, арбитражем, экономикой и рисками, а для анализа используют RandomForest с 400 деревьями. Особый упор сделан на риск-менеджмент, ведь без грамотного управления рисками даже самые продвинутые торговые алгоритмы бесполезны.
Построение модели для ограничения диапазона сигналов по тренду (Часть 5): Система уведомлений (Часть III)
Эта часть серии посвящена интеграции WhatsApp с MetaTrader 5 для получения уведомлений. Мы рассмотрим блок-схему для упрощения понимания и обсудим важность мер безопасности при интеграции. Основная цель индикаторов — упростить анализ за счет автоматизации. Они должны включать методы уведомления для оповещения пользователей при выполнении определенных условий.
Оптимизация портфеля на форексе: Синтез VaR и теории Марковица
Как осуществляется портфельная торговля на Форекс? Как могут быть синтезированы портфельная теория Марковица для оптимизации пропорций портфеля и VaR модель для оптимизации риска портфеля? Создаем код по портфельной теории, где, с одной стороны, получим низкий риск, а с другой — приемлемую долгосрочную доходность.
Алгоритмическая торговля на основе 3D-паттернов разворота
Открываем новый мир автоматической торговли на 3D-барах. Как выглядит торговый робот на многомерных барах цены, и могут ли "желтые" кластеры 3D-баров предсказывать развороты трендов? Как выглядит трейдинг в множестве измерений?
Популяционный ADAM (Adaptive Moment Estimation)
В статье представлено превращение известного и популярного градиентного метода оптимизации ADAM в популяционный алгоритм и его модификация с введением гибридных особей. Новый подход позволяет создавать агентов, комбинирующих элементы успешных решений с использованием вероятностного распределения. Ключевое нововведение — формирование гибридных популяционных особей, которые адаптивно аккумулируют информацию от наиболее перспективных решений, повышая эффективность поиска в сложных многомерных пространствах.
Создаем 3D-бары на основе времени, цены и объема
Что такое многомерные 3D-графики цен и как они создаются. Как 3D-бары предсказывают развороты цены, и как Python и MetaTrader 5 позволяют строить эти объемные бары в режиме реального времени.
Построение модели для ограничения диапазона сигналов по тренду (Часть 5): Система уведомлений (Часть I)
Мы разобьем основной код MQL5 на отдельные фрагменты, чтобы проиллюстрировать интеграцию Telegram и WhatsApp для получения уведомлений о сигналах от индикатора Trend Constraint, который мы создаем в этой серии статей. Статья будет полезна трейдерам, а также начинающим и опытным разработчикам. Сначала мы рассмотрим настройку уведомлений в MetaTrader 5 и пользу их подключения для пользователя. На основе этого разработчики смогут отметить для себя определенные моменты для дальнейшего применения в своих системах.
Нелинейные регрессионные модели на бирже
Нелинейные регрессионные модели на бирже: реально ли прогнозировать финансовые рынки? Попробуем создать моделеь для прогноза цен на евро-доллар, и сделать на ее основе двух роботов - на Python и MQL5.
Алгоритм арифметической оптимизации (AOA): Путь от AOA к SOA (Simple Optimization Algorithm)
В данной статье мы представляем алгоритм арифметической оптимизации (Arithmetic Optimization Algorithm, AOA), который основывается на простых арифметических операциях: сложении, вычитании, умножении и делении. Эти базовые математические действия служат основой для поиска оптимальных решений в различных задачах.
Применение ассоциативных правил для анализа данных на Форексе
Как применить предиктивные правила ретейл-аналитики супермаркетов к реальному рынку Форекс? Как связаны покупки печенья, молока и хлеба с транзакциями на бирже? В статье рассматривается инновационный подход к алгоритмическому трейдингу, основанный на применении ассоциативных правил.
Разрабатываем мультивалютный советник (Часть 20): Приводим в порядок конвейер этапов автоматической оптимизации проектов (I)
Мы создали уже довольно много компонентов, которые помогают организовать процесс автоматической оптимизации. При создании мы придерживались традиционной цикличности: от создания минимального рабочего кода до рефакторинга и получения улучшенного кода. Пришло время заняться наведением порядка в нашей базе данных, которая тоже является ключевым компонентом в создаваемой системе.
Алгоритм атомарного орбитального поиска — Atomic Orbital Search (AOS): Модификация
Во второй части статьи мы продолжим разработку модифицированной версии алгоритма AOS (Atomic Orbital Search), сфокусировавшись на специфических операторах для повышения его эффективности и адаптивности. После анализа основ и механик алгоритма, мы обсудим идеи по улучшению производительности и возможности анализа сложных пространств решений, предлагая новые подходы для расширения его функциональности как инструмента для оптимизации.
Интеграция скрытых марковских моделей в MetaTrader 5
В этой статье мы продемонстрируем, как скрытые марковские модели, обученные с использованием Python, могут быть интегрированы в приложения MetaTrader 5. Скрытые марковские модели — это мощный статистический инструмент, используемый для моделирования временных рядов данных, где моделируемая система характеризуется ненаблюдаемыми (скрытыми) состояниями. Фундаментальная предпосылка HMM заключается в том, что вероятность нахождения в заданном состоянии в определенный момент времени зависит от состояния процесса в предыдущем временном интервале.
Анализ влияния погоды на валюты аграрных стран с использованием Python
Как связана погода и валютный рынок? В классической экономической теории долгое время не признавали влияние таких факторов на поведение рынка. Но все изменилось. Давайте попробуем найти связи в состоянии погоды и положения аграрных валют на рынке.
Методы оптимизации библиотеки Alglib (Часть II)
В статье продолжим изучение оставшихся методов оптимизации из библиотеки ALGLIB, уделяя особое внимание их тестированию на сложных многомерных функциях. Это позволит нам не только оценить эффективность каждого из алгоритмов, но и выявить их сильные и слабые стороны в различных условиях.
Возможности Мастера MQL5, которые вам нужно знать (Часть 22): Условные генеративно-состязательные сети (cGAN)
Генеративно-состязательные сети — это пара нейронных сетей, которые обучаются друг на друге для получения более точных результатов. Мы рассмотрим условный тип этих сетей в контексте их возможного применения в прогнозировании финансовых временных рядов в рамках класса сигналов советника.
Разрабатываем мультивалютный советник (Часть 19): Создаём этапы, реализованные на Python
Пока что мы рассматривали автоматизацию запуска последовательных процедур оптимизации советников исключительно в штатном тестере стратегий. Но что делать, если между такими запусками нам хотелось бы выполнить некоторую обработку уже полученных данных, используя другие средства? Попробуем добавить возможность создания новых этапов оптимизации, выполняемых программами, написанными на Python.
Поиск произвольных паттернов валютных пар на Python с использованием MetaTrader 5
Есть ли повторяющиеся паттерны и закономерности на валютном рынке? Я решил создать свою собственную систему анализа паттернов, используя Python и MetaTrader 5. Этакий симбиоз математики и программирования для покорения Форекса.