Нейросети в трейдинге: Рекуррентное моделирование микродвижений рынка (EV-MGRFlowNet)
В статье рассматривается перенос архитектуры EV-MGRFlowNet, изначально разработанной для обработки событийных видеоданных, в область финансовых временных рядов. Представленный подход раскрывает новый взгляд на рынок как на поток микродвижений, где цена, объём и ликвидность образуют динамическую структуру, поддающуюся рекуррентному анализу без явного надзора.
От начального до среднего уровня: Массивы и строки (III)
Эта статья посвящена рассмотрению двух аспектов. Во-первых, того, как стандартная библиотека может преобразовывать бинарные значения в другие формы представления, такие как восьмеричная, десятичная и шестнадцатеричная. А во-вторых, мы поговорим о том, как можно определить ширину нашего пароля на основе секретной фразы, используя уже полученные знания.
Переосмысливаем классические стратегии в MQL5 (Часть II): FTSE100 и Гилты Великобритании
В данной серии статей мы исследуем популярные торговые стратегии и попытаемся улучшить их с помощью ИИ. В сегодняшней статье мы вновь рассмотрим классическую торговую стратегию, построенную на взаимосвязи между фондовым рынком и рынком облигаций.
Разработка динамического советника на нескольких парах (Часть 3): Стратегии возврата к среднему и моментума
В этой статье мы рассмотрим третью часть нашего пути в формулировании динамического мультипарного советника (Dynamic Multi-Pair Expert Advisor), сосредоточив внимание на интеграции стратегий торговли на основе возврата к среднему и моментума. Мы разберем, как обнаруживать и действовать при отклонениях цен от среднего (Z-оценка), а также как измерять моментум по нескольким валютным парам, чтобы определить направление торговли.
Нейросети в трейдинге: Единый взгляд на пространство и время (Global-Local Attention)
Продолжаем работу по реализации подходов, предложенных авторами фреймворка Extralonger. На этот раз сосредоточимся на построении модуля Global-Local Spatial Attention средствами MQL5, рассматривая как его структуру, так и практическую интеграцию в общий вычислительный процесс.
Возможности Мастера MQL5, которые вам нужно знать (Часть 29): Темпы обучения и многослойные перцептроны
Мы завершаем рассмотрение чувствительности темпа обучения к производительности советников изучением адаптируемых темпов обучения. Темпы должны быть настроены для каждого параметра в слое в процессе обучения, поэтому нам необходимо оценить потенциальные преимущества по сравнению с ожидаемыми потерями производительности.
От начального до среднего уровня: Struct (II)
В данной статье мы попытаемся разобраться в том, почему структуры были созданы на таких языках программирования, как MQL5, а также почему в некоторых случаях структуры являются идеальным способом передачи значений между функциями и процедурами, а в других случаях они могут быть не самым лучшим способом сделать это.
Нейросети в трейдинге: От трансформеров к спайковым нейронам (SpikingBrain)
Фреймворк SpikingBrain демонстрирует уникальный подход к обработке данных: нейроны реагируют только на значимые события, эффективно фильтруя шум. Его событийная архитектура снижает вычислительные затраты, сохраняя ключевую информацию о движениях. Адаптивные пороги и возможность использования предварительно обученных модулей обеспечивают гибкость и масштабируемость модели.
Криптография в MQL5: Шифрование, хеширование и защита данных
В данной статье рассматривается интеграция криптографии в MQL5 с целью повышения безопасности и функциональности торговых алгоритмов. Мы рассмотрим основные методы криптографии и реализуем их в автоматической торговле.
Возможности Мастера MQL5, которые вам нужно знать (Часть 31): Выбор функции потерь
Функция потерь (Loss Function) — это ключевая метрика алгоритмов машинного обучения, которая обеспечивает обратную связь для процесса обучения, количественно определяя, насколько хорошо данный набор параметров работает по сравнению с предполагаемым целевым значением. Мы рассмотрим различные форматы этой функции в пользовательском классе Мастера MQL5.
Сингулярный спектральный анализ на MQL5
Данная статья предназначена в качестве руководства для тех, кто не знаком с концепцией сингулярного спектрального анализа и хочет получить достаточно знаний, чтобы иметь возможность применять встроенные инструменты, доступные на MQL5.
HTTP и Connexus (Часть 2): Понимание архитектуры HTTP и дизайна библиотеки
В настоящей статье рассматриваются основы протокола HTTP, описываются основные методы (GET, POST, PUT, DELETE), коды состояния, а также структура URL-адресов. Кроме того, в ней представлено начало создания библиотеки Connexus с классами CQueryParam и CURL, облегчающими манипулирование URL-адресами и параметрами запросов в HTTP-запросах.
Оптимизация хаотичной игрой — Chaos Game Optimization (CGO)
Представляем новый метаэвристический алгоритм Chaos Game Optimization (CGO), демонстрирующий уникальную способность сохранять высокую эффективность при работе с задачами большой размерности. В отличие от большинства оптимизационных алгоритмов, CGO не только не теряет, но иногда даже увеличивает производительность при масштабировании задачи, что является его ключевой особенностью.
Переосмысливаем классические стратегии в MQL5 (Часть III): Прогнозирование индекса FTSE 100
В данной серии статей мы вернемся к хорошо известным торговым стратегиям, чтобы узнать, можно ли улучшить их с помощью искусственного интеллекта. В сегодняшней статье мы рассмотрим индекс FTSE 100 и попытаемся спрогнозировать его, используя часть отдельных акций, входящих в состав индекса.
Разработка инструментария для анализа движения цен (Часть 2): Скрипт аналитических комментариев
В продолжение нашей работы по упрощению взаимодействия с поведением цены мы рады представить еще один инструмент, который может значительно улучшить ваш анализ рынка и помочь вам принимать обоснованные решения. Этот инструмент отображает ключевые технические индикаторы, такие как цены предыдущего дня, значимые уровни поддержки и сопротивления, а также торговый объем, автоматически генерируя визуальные подсказки на графике.
Алгоритм поиска по кругу — Circle Search Algorithm (CSA)
В статье представлен новый метаэвристический алгоритм оптимизации CSA (Circle Search Algorithm), основанный на геометрических свойствах окружности. Алгоритм использует принцип движения точек по касательным для поиска оптимального решения, сочетая фазы глобального исследования и локальной эксплуатации.
Моделирование рынка (Часть 02): Кросс-ордера (II)
В отличие от того, что было в предыдущей статье, здесь мы осуществим проверку опции выбора на советнике. Хотя это еще не окончательное решение, но пока этого будет достаточно. С помощью данной статьи, вы сможете понять, как реализовать одно из возможных решений.
От новичка до эксперта: Создание анимированного советника для новостей в MQL5 (III) — Анализ индикаторов
В настоящей статье продолжим рассказ о советнике «Заголовки новостей», представив специальную полосу «Анализ индикаторов» (indicator insights) — компактное отображение на графике ключевых технических сигналов, генерируемых популярными индикаторами, такими как RSI, MACD, Stochastic и CCI. Такой подход устраняет необходимость в нескольких подокнах индикаторов в терминале MetaTrader 5, сохраняя ваше рабочее пространство чистым и эффективным. Используя MQL5 API для доступа к данным индикаторов в фоновом режиме, мы можем обрабатывать и визуализировать рыночную информацию в режиме реального времени с помощью пользовательской логики.
Возможности Мастера MQL5, которые вам нужно знать (Часть 49): Обучение с подкреплением и проксимальной оптимизацией политики
Проксимальная оптимизация политики (Proximal Policy Optimization) — еще один алгоритм обучения с подкреплением, который обновляет политику, часто в сетевой форме, очень маленькими шагами, чтобы обеспечить стабильность модели. Как обычно, мы рассмотрим, как этот алгоритм можно применить в советнике, собранном с помощью Мастера.
Автоматизация торговых стратегий на MQL5 (Часть 7): Создание советника по сеточной торговле с динамическим масштабированием лотов
В настоящей статье мы создадим советник сеточной торговли на MQL5, использующий динамическое масштабирование лотов. Мы расскажем о разработке стратегии, реализации кода и процессе тестирования на истории. Наконец, мы поделимся ключевыми идеями и передовыми практиками по оптимизации автоматической торговой системы.
Разработка системы репликации (Часть 75): Новый Chart Trade (II)
В этой статье мы расскажем о классе C_ChartFloatingRAD. Это то, что позволяет Chart Trade работать. Однако на этом объяснение не закончится. Мы завершим его в следующей статье, так как содержание данной статьи довольно объемное и требует глубокого понимания. Представленные здесь материалы предназначены только для обучения. Ни в коем случае не рассматривайте его как окончательное приложение, целью которого не является изучение представленных концепций.
От начального до среднего уровня: Операторы
В этой статье мы рассмотрим основных операторов. Хотя тема проста для понимания, есть определенные моменты, которые имеют большое значение, когда речь идет о включении математических выражений в формат кода. Без адекватного понимания этих деталей, программисты с небольшим опытом или вообще без него в итоге отказываются от попыток создать собственных решений.
Гауссовcкие процессы в машинном обучении (Часть 2): Реализация и тестирование модели классификации в MQL5
В этой части мы рассмотрим реализацию ключевых интерфейсов библиотеки Гауссовских процессов на MQL5 — IKernel, ILikelihood и IInference. Также мы продемонстрируем её работу на синтетических данных и и напишем индикаторы для классификации и регрессии, демонстрирующие её работу в онлайн-режиме — с переобучением модели на каждом новом баре.
Алгоритм Поиска Ворона — Crow Search Algorithm (CSA)
Алгоритм Поиска Ворона (CSA) — это элегантная метаэвристика, вдохновленная умением ворон прятать пищу и находить чужие тайники, которая решает задачи оптимизации через баланс между следованием за успешными решениями и случайным исследованием пространства поиска. Выясним, насколько алгоритм производителен.
Моделирование рынка (Часть 03): Вопрос производительности
Часто нам приходится делать шаг назад, а затем двигаться вперед. В этой статье мы покажем все изменения, необходимые для того, чтобы не нарушить работу индикаторов Mouse и Chart Trade. В качестве бонуса расскажем о других изменениях, произошедших в других заголовочных файлах, которые будут широко использоваться в будущем.
Разработка инструментария для анализа движения цен (Часть 15): Введение в теорию четвертей (I) — Скрипт Quarters Drawer
Точки поддержки и сопротивления являются критическими уровнями, которые сигнализируют о возможном развороте и продолжении тренда. Хотя определение этих уровней может оказаться непростой задачей, ее решение позволит вам хорошо ориентироваться на рынке. В статье представлен инструмент Quarters Drawer. Он поможет вам определить как основные, так и второстепенные уровни поддержки и сопротивления.
Нейросети в трейдинге: Спайково-семантический подход к пространственно-временной идентификации (Окончание)
S3CE-Net в нашей интерпретации ловко переводит рынок в язык событий и фиксирует ранние импульсы, которые традиционные индикаторы просто усредняют. STFS гарантирует устойчивость обучения — модель видит данные под разными углами и не переобучается на локальных аномалиях. SSAM-блоки и OpenCL-реализация дают практическую скорость и точность, а разделение режимов обучение/эксплуатация сохраняет ресурсы в продакшене.
Создание торговой панели администратора на MQL5 (Часть IV): Безопасность входа в систему
Представьте себе, что злоумышленник проник в систему управления торговли и получил доступ к компьютерам и панели администратора, используемым для передачи ценных сведений миллионам трейдеров по всему миру. Это может привести к катастрофическим последствиям, таким как несанкционированная отправка вводящих в заблуждение сообщений или случайные нажатия на кнопки, запускающие непреднамеренные действия. В этой статье мы рассмотрим меры безопасности в MQL5 и новые функции безопасности, которые мы реализовали в нашей панели администратора для защиты от этих угроз. Совершенствуя наши протоколы безопасности, мы стремимся защитить наши каналы связи и сохранить доверие членов нашего торгового сообщества.
Помощник Connexus (Часть 5): HTTP-методы и коды состояния
В настоящей статье мы разберемся с методами HTTP и кодами состояния, двумя очень важными элементами взаимодействия между клиентом и сервером в Интернете. Понимание того, что каждый метод действительно дает возможность более точно делать запросы, информируя сервер о том, какое действие надо выполнить, и делая его более эффективным.
Интеграция Discord с MetaTrader 5: Создание торгового бота с уведомлениями в реальном времени
В этой статье мы рассмотрим, как интегрировать MetaTrader 5 и сервер Discord, чтобы получать торговые уведомления в реальном времени из любой точки мира. Мы узнаем, как настроить платформу и Discord, чтобы обеспечить отправку оповещений в Discord, а также поговорим о проблемах безопасности, возникающих в связи с использованием WebRequest и вебхуков для таких способов оповещения.
Методы повторной выборки для оценки прогнозирования и классификации в MQL5
В этой статье рассмотрим и реализуем методы оценки качества модели, которые используют один и тот же набор данных как для обучения, так и для проверки.
Применение ансамблевых методов для задач классификации на языке MQL5
В данной статье мы представляем реализацию нескольких ансамблевых классификаторов на языке MQL5 и рассматриваем их эффективность в различных ситуациях.
От начального до среднего уровня: Директива Include
В сегодняшней статье мы поговорим о директиве компиляции, широко используемой в различных кодах, которые можно найти в MQL5. Хотя данную директива будет объяснена здесь довольно поверхностно, важно, чтобы вы начали понимать, как ее использовать, поскольку вскоре она станет незаменимой при переходе на более высокий уровень программирования. Представленные здесь материалы предназначены только для обучения. Ни в коем случае не рассматривайте это приложение как окончательное, цели которого будут иные, кроме изучения представленных концепций.
От начального до среднего уровня: Плавающая точка
Эта статья является кратким введением к понятию числа с плавающей точкой. Поскольку этот текст очень сложный, советую вам прочитать его спокойно и внимательно. Не рассчитывайте быстро освоить систему с плавающей точкой, она становится понятной только со временем, по мере появления опыта использования. Но эта статья поможет вам понять, почему ваше приложение иногда выдает результат, отличный от ожидаемого.
Алгоритм обратного поиска — Backtracking Search Algorithm (BSA)
Что если алгоритм оптимизации мог бы помнить свои прошлые путешествия и использовать эту память для поиска лучших решений? BSA делает именно это — балансируя между исследованием нового и возвращением к проверенному. В статье раскрываем секреты алгоритма. Простая идея, минимум параметров и стабильный результат.
От начального до среднего уровня: Массив (III)
В этой статье мы рассмотрим, как работать с массивами в MQL5, в том числе, как передавать информацию между функциями и процедурами с помощью массивов. Цель — подготовить вас к тому, что будет демонстрироваться и разъясняться в будущих материалах серии. Поэтому настоятельно рекомендую внимательно изучить то, что будет показано в этой статье.
Алгоритм циклического партеногенеза — Cyclic Parthenogenesis Algorithm (CPA)
В данной статье рассмотрим новый популяционный алгоритм оптимизации CPA (Cyclic Parthenogenesis Algorithm), вдохновленный уникальной репродуктивной стратегией тлей. Алгоритм сочетает два механизма размножения — партеногенез и половое, а также использует колониальную структуру популяции с возможностью миграции между колониями. Ключевыми особенностями алгоритма являются адаптивное переключение между различными стратегиями размножения и система обмена информацией между колониями через механизм перелета.
Алгоритм голубых обезьян — Blue Monkey (BM) Algorithm
В статье представлена реализация метаэвристического алгоритма Blue Monkey, основанного на моделировании социального поведения голубых мартышек. Рассматриваются ключевые механизмы алгоритма - групповая структура популяции, следование за локальными лидерами и обновление поколений через замену худших взрослых особей лучшими детёнышами, а также анализируются результаты тестирования.
Загрузка данных Международного валютного фонда на Python
Загрузка данных Международного валютного фонда на Python: добываем данные IMF для применения в макроэкономических валютных стратегиях. Как макроэкономика может помочь трейдеру и алготрейдеру?
Моделирование рынка (Часть 04): Создание класса C_Orders (I)
В данной статье мы начнем создание класса C_Orders, чтобы иметь возможность отправлять ордера на торговый сервер. Мы будем делать это понемногу, поскольку наша цель состоит в том, чтобы подробно объяснить, как это будет происходить с помощью системы обмена сообщениями.