Разработка системы репликации - Моделирование рынка (Часть 03): Внесение корректировок (I)
Начнем с прояснения нынешней ситуации, потому что мы начали не самым лучшим образом. Если не сделать этого сейчас, то вскоре мы окажемся в беде.
Управление рисками (Часть 1): Основы построения класса по управлению рисками
В этой статье мы рассмотрим основы управления рисками в трейдинге и узнаем, как создать свои первые функции для расчета подходящего лота для сделки, а также стоп-лосса. Кроме того, мы подробно рассмотрим, как работают эти функции, объясняя каждый шаг. Наша цель — дать четкое понимание того, как применять эти концепции в автоматической торговле. В конце мы применим все на практике, создав простой скрипт с разработанным нами включаемым файлом.
Разработка системы репликации (Часть 40): Начало второй фазы (I)
Сегодня поговорим о новой фазе системы репликации/моделирования. На данном этапе разговор станет поистине интересным, а содержанием довольно насыщенным. Я настоятельно рекомендую вам внимательно прочитать статью и пользоваться приведенными в ней ссылками. Это поможет вам лучше понять содержание.
Создаем динамическую мультисимвольную мультипериодную панель индекса относительной силы (RSI) в MQL5
В статье рассмотрена разработка динамической мультисимвольной мультипериодной панели индикатора RSI в MQL5. Панель призвана предоставлять трейдерам значения RSI в реальном времени по различным символам и таймфреймам. Панель будет оснащена интерактивными кнопками, обновлениями в реальном времени и цветовыми индикаторами, помогающими трейдерам принимать обоснованные решения.
Переходим на MQL5 Algo Forge (Часть 3): Использование чужих репозиториев в собственном проекте
Рассмотрим, как можно уже сейчас подключить чужой код из любого репозитория в хранилище MQL5 Algo Forge к своему проекту. В этой статье мы наконец обратимся к этой многообещающей, но и более сложной задаче: как на практике подключить и использовать в своём проекте библиотеки из чужих репозиториев хранилища MQL5 Algo Forge.
Возможности Мастера MQL5, которые вам нужно знать (Часть 44): Технический индикатор Average True Range (ATR)
Осциллятор ATR — очень популярный индикатор, используемый в качестве индикатора волатильности, особенно на валютных рынках, где данные об объемах скудны. Как и в случае с предыдущими индикаторами, мы рассмотрим паттерны и поделимся стратегиями и отчетами о тестировании.
Торговая стратегия обратного разрыва справедливой стоимости
Обратный разрыв справедливой стоимости (IFVG) возникает, когда цена возвращается к ранее выявленному разрыву справедливой стоимости и, вместо того чтобы продемонстрировать ожидаемую поддержку или сопротивление, не справляется с ним. Этот сбой может сигнализировать о потенциальном изменении направления движения рынка и обеспечить противоположное торговое преимущество. В настоящей статье мы представим собственный подход к количественной оценке и использованию обратного разрыва справедливой стоимости в качестве стратегии для советников MetaTrader 5.
Возможности Мастера MQL5, которые вам нужно знать (Часть 41): Сети Deep-Q
Сеть Deep-Q (Deep-Q-Network) — это алгоритм обучения с подкреплением, который вовлекает нейронные сети в прогнозирование следующего значения Q и идеального действия в процессе обучения модуля машинного обучения. Мы уже рассматривали альтернативный алгоритм обучения с подкреплением — Q-обучение. Таким образом, в данной статье представлен еще один пример того, как многослойный перцептрон (multi-layer perceptron, MLP), обученный с помощью обучения с подкреплением, может использоваться в пользовательском классе сигналов.
Нейросети в трейдинге: Прогнозирование временных рядов при помощи адаптивного модального разложения (ACEFormer)
Предлагаем познакомиться с архитектурой ACEFormer — современным решением, сочетающим эффективность вероятностного внимания и адаптивное разложение временных рядов. Материал будет полезен тем, кто ищет баланс между вычислительной производительностью и точностью прогноза на финансовых рынках.
Нейросети в трейдинге: Обобщение временных рядов без привязки к данным (Базовые модули модели)
Продолжаем знакомство с фреймворком Mamba4Cast. И сегодня мы погрузимся в практическую реализацию предложенных подходов. Mamba4Cast создавался не для долгого прогрева на каждом новом временном ряде, а для мгновенного включения в работу. Благодаря идее Zero‑Shot Forecasting модель способна сразу выдавать качественные прогнозы на реальных данных без дообучения и тонкой настройки гиперпараметров.
Возможности Мастера MQL5, которые вам нужно знать (Часть 24): Скользящие средние
Скользящие средние — очень распространенный индикатор, который используют и понимают большинство трейдеров. Мы рассмотрим возможные варианты их использования, которые относительно редко используются в советниках, собранных с помощью Мастера MQL5.
Применение модели машинного обучения CatBoost в качестве фильтра для трендовых стратегий
CatBoost – это эффективная модель машинного обучения на основе деревьев, которая специализируется на принятии решений на основе статических признаков. Другие модели на основе деревьев, такие как XGBoost и Random Forest, обладают схожими характеристиками в плане надежности, интерпретируемости и способности работать со сложными паттернами. Эти модели имеют широкий спектр применения: от анализа признаков до управления рисками. В данной статье мы пройдемся по процедуре использования обученной модели CatBoost в качестве фильтра для классической трендовой стратегии на основе пересечения скользящих средних.
Нейросети в трейдинге: Прогнозирование временных рядов при помощи адаптивного модального разложения (ACEFormer)
Предлагаем познакомиться с архитектурой ACEFormer — современным решением, сочетающим эффективность вероятностного внимания и адаптивное разложение временных рядов. Материал будет полезен тем, кто ищет баланс между вычислительной производительностью и точностью прогноза на финансовых рынках.
Разработка системы репликации - Моделирование рынка (Часть 09): Пользовательские события
Здесь мы увидим, как активировать пользовательские события и проработать вопрос о том, как индикатор сообщает о состоянии сервиса репликации/моделирования.
Разработка системы репликации (Часть 39): Прокладываем путь (III)
Прежде, чем приступить ко второму этапу разработки, необходимо закрепить несколько идей. Знаете ли вы, как заставить MQL5 делать то, что вам необходимо? Пытались ли когда-нибудь выйти за рамки того, что содержится в документации? Если нет, то приготовьтесь. Потому что прямо сейчас мы будем делать то, чем большинство людей обычно не занимается.
Построение модели для ограничения диапазона сигналов по тренду (Часть 9): Советник с несколькими стратегиями (III)
Добро пожаловать в третью часть серии статьей о трендах! Сегодня мы углубимся в использование дивергенции как стратегии определения оптимальных точек входа в рамках преобладающего дневного тренда. Мы также представим специальный механизм фиксации прибыли, аналогичный скользящему стоп-лоссу, но с уникальными усовершенствованиями. Кроме того, мы обновим советник Trend Constraint до более продвинутой версии, включив в него новое условие исполнения сделки в дополнение к существующим. Также мы продолжим изучать практическое применение MQL5 в разработке алгоритмов.
Автоматизация торговых стратегий на MQL5 (Часть 6): Поиск ордер-блоков для торговли по концепции Smart Money
В настоящей статье мы автоматизируем обнаружение ордер-блоков на MQL5, используя чистый анализ движения цены. Мы определяем ордер-блоки , реализуем их обнаружение и интегрируем автоматическое исполнение сделок. Наконец, для оценки эффективности стратегии, мы проведём её бэк-тестирование.
Нейросети в трейдинге: Сквозная многомерная модель прогнозирования временных рядов (GinAR)
Предлагаем познакомиться с инновационным подходом к прогнозированию временных рядов с пропущенными данными на базе фреймворка GinAR. В статье показана реализация ключевых компонентов на OpenCL, что обеспечивает высокую производительность. В следующей публикации мы подробно рассмотрим интеграцию этих решений в MQL5. Это позволит понять, как применять метод на практике в трейдинге.
Разработка системы репликации (Часть 43): Проект Chart Trade (II)
Большинство людей, которые хотят или мечтают научиться программировать, на самом деле не имеют представления о том, что делают. Их деятельность заключается в попытках создавать вещи определенным образом. Однако программирование – это вовсе не подгонка под ответ подходящих решений. Если действовать таким образом, можно создать больше проблем, чем решений. Здесь мы будем делать нечто более продвинутое и, следовательно, другое.
Анализ влияния погоды на валюты аграрных стран с использованием Python
Как связана погода и валютный рынок? В классической экономической теории долгое время не признавали влияние таких факторов на поведение рынка. Но все изменилось. Давайте попробуем найти связи в состоянии погоды и положения аграрных валют на рынке.
Нейросети в трейдинге: Иерархический векторный Transformer (Окончание)
Продолжаем изучение метода Иерархического Векторного Transformer. И в данной статье мы завершим построение модели. А также проведем её обучение и тестирование на реальных исторических данных.
Разработка MQTT-клиента для MetaTrader 5: методология TDD (финал)
Статья является последней частью серии, описывающей этапы разработки нативного MQL5-клиента для протокола MQTT 5.0. Хотя библиотека еще не готова к использованию, в этой части мы будем использовать наш клиент для обновления пользовательского символа с помощью тиков (или цен), полученных от другого брокера. В конце статьи вы найдете дополнительную информацию о текущем состоянии библиотеки и узнаете о том, чего не хватает для ее полного соответствия протоколу MQTT 5.0, о возможном плане действий и о том, как следить за развитием библиотеки и вносить в нее свой вклад.
От новичка к эксперту: Главное на пути к торговле на MQL5
Раскройте свой потенциал! Вас окружают возможности. Узнайте 3 главных секрета, с помощью которых вы начнете изучать MQL5 или перейдете на новый уровень владения этим языком. Погрузимся в обсуждение советов и рекомендаций, в равной степени полезных и начинающим, и профи.
Построение модели для ограничения диапазона сигналов по тренду (Часть 10): Золотой крест и крест смерти
Знаете ли вы, что стратегии "Золотой крест" (Golden Cross) и "Крест смерти" (Death Cross), основанные на пересечении скользящих средних, являются одними из самых надежных индикаторов для определения долгосрочных рыночных трендов? "Золотой крест" сигнализирует о бычьем тренде, когда более короткая скользящая средняя пересекает более длинную снизу вверх, в то время как "крест смерти" указывает на медвежий тренд, когда короткая скользящая средняя опускается ниже длинной. Несмотря на их простоту и эффективность, ручное применение этих стратегий часто приводит к упущенным возможностям или задержке сделок.
Эволюционная стратегия адаптации ковариационной матрицы — Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
Исследуем один из самых интересных алгоритмов без градиентной оптимизации, который учится понимать геометрию целевой функции. Рассмотрим классическую реализацию CMA-ES с небольшой модификацией — заменой нормального распределения на степенное. Детальный разбор математики алгоритма, практическая реализация и честный анализ: где CMA-ES непобедим, а где его лучше не применять.
Создание самооптимизирующихся советников на MQL5 (Часть 5): Самоадаптирующиеся торговые правила
Правилам безопасного использования индикатора не всегда легко следовать. Спокойные рыночные условия могут неожиданно приводить к появлению на индикаторе значений, которые не будут считаться торговым сигналом, что приведет к упущенным возможностям для алгоритмических трейдеров. В статье рассматривается потенциальное решение проблемы, а также создание торговых приложений, способных адаптировать свои торговые правила к имеющимся рыночным данным.
Нейросети в трейдинге: Актер—Режиссёр—Критик (Окончание)
Фреймворк Actor–Director–Critic — это эволюция классической архитектуры агентного обучения. В статье представлен практический опыт его реализации и адаптации к условиям финансовых рынков.
Форекс советник на нейросети N-BEATS Network
Реализация архитектуры N-BEATS для форекс-трейдинга в MetaTrader 5 с квантильным прогнозированием и адаптивным риск-менеджментом. Архитектура адаптирована через билинейную нормализацию и специализированные функции потерь для финансовых данных. Тестирование на данных 2025 года показало неспособность генерировать прибыль, подтверждая разрыв между теоретическими достижениями и практической торговой эффективностью.
Разработка системы репликации (Часть 36): Внесение корректировок (II)
Одна из вещей, которая может усложнить нашу жизнь как программистов, - это предположения. В этой статье я покажу вам, как опасно делать предположения: как в части программирования на MQL5, где принимается, что у курса будет определенная величина, так и при использовании MetaTrader 5, где принимается, что разные серверы работают одинаково.
Нейросети в трейдинге: Мультизадачное обучение на основе модели ResNeXt (Окончание)
Продолжаем изучение фреймворка мультизадачного обучения на основе ResNeXt, который отличается модульностью, высокой вычислительной эффективностью и способностью выявлять устойчивые паттерны в данных. Использование единого энкодера и специализированных "голов" снижает риск переобучения модели и повышает качество прогнозов.
Упрощаем торговлю на новостях (Часть 4): Повышаем производительность
В этой статье будут рассмотрены методы улучшения работы советника в тестере стратегий, будет написан код для разделения времени новостных событий на почасовые категории. Доступ к этим новостным событиям будет осуществляться в течение указанного для них часа. Это гарантирует, что советник может эффективно управлять сделками на основе событий как в условиях высокой, так и низкой волатильности.
Разработка системы репликации (Часть 49): Все усложняется (I)
В этой статье мы немного усложним ситуацию. Используя то, что было показано в предыдущих статьях, мы начнем открывать доступ к файлу шаблона, чтобы пользователь мог использовать свой собственный шаблон. Однако я буду вносить изменения постепенно, так как также буду дорабатывать индикатор, чтобы снизить нагрузку на MetaTrader 5.
Нейросети в трейдинге: Многоагентная система с концептуальным подтверждением (FinCon)
Предлагаем познакомиться с фреймворком FinCon, который представляет собой многоагентную систему на основе больших языковых моделей (LLM). Фреймворк использует концептуальное вербальное подкрепление для улучшения принятия решений и управления рисками, что позволяет эффективно выполнять разнообразные финансовые задачи.
Изучение передовых методов машинного обучения в стратегии пробоя «коридора Дарваса» (Darvas Box Breakout)
Стратегия Darvas Box Breakout, созданная Николасом Дарвасом, представляет собой подход в технической торговле, который выявляет потенциальные сигналы на покупку, когда цена акций поднимается выше установленного диапазона «коридора», что указывает на сильный восходящий импульс. В этой статье мы применим эту стратегическую концепцию в качестве примера для изучения трех передовых методов машинного обучения. К ним относятся использование модели машинного обучения для генерации сигналов вместо фильтрации сделок, применение непрерывных сигналов вместо дискретных и использование для подтверждения сделок моделей, обученных на разных таймфреймах.
Возможности Мастера MQL5, которые вам нужно знать (Часть 25): Тестирование и торговля на нескольких таймфреймах
Стратегии, основанные на нескольких таймфреймах, по умолчанию не могут быть протестированы в советниках, собранных с помощью Мастера, из-за архитектуры кода MQL5, используемой в классах сборки. Мы рассмотрим способ обхода этого ограничения для стратегий, которые предполагают использование нескольких таймфреймов на примере квадратичной скользящей средней.
Майнинг данных балансов центробанков и получение картины мировой ликвидности
Майнинг данных балансов центробанков позволяет получить картину мировой ликвидности рынка Форекс и ключевых валют. Мы объединяем данные ФРС, ЕЦБ, BOJ и PBoC в композитный индекс и применяем машинное обучение для выявления скрытых закономерностей. Такой подход превращает сырой поток данных в реальные торговые сигналы, соединяя фундаментальный и технический анализ.
Разработка системы репликации - Моделирование рынка (Часть 08): Блокировка индикатора
В этой статье мы рассмотрим, как заблокировать индикатор при простом использовании языка MQL5, и сделаем это очень интересным и удивительным способом.
Переосмысливаем классические стратегии (Часть VI): Анализ нескольких таймфреймов
В данной серии статей мы вновь рассматриваем классические стратегии, чтобы выяснить, можно ли улучшить их с помощью ИИ. В сегодняшней статье мы рассмотрим популярную стратегию анализа нескольких таймфреймов, чтобы оценить, можно ли улучшить эту стратегию с помощью ИИ.
Визуализация стратегий в MQL5: раскладываем результаты оптимизации по графикам критериев
В этой статье мы напишем пример визуализации процесса оптимизации и сделаем отображение трёх лучших проходов для четырёх критериев оптимизации. А также обеспечим возможность выбора одного из трёх лучших проходов для вывода его данных в таблицы и на график.
Нейросети в трейдинге: Иерархический двухбашенный трансформер (Окончание)
Мы продолжаем построение модели иерархического двухбашенного трансформера Hidformer, который предназначен для анализа и прогнозирования сложных многомерных временных рядов. В данной статье мы доведем начатую ранее работу до логического завершения с тестированием модели на реальных исторических данных.