
Análise Múltipla de Símbolos com Python e MQL5 (Parte I): Fabricantes de Circuitos Integrados do NASDAQ
Junte-se a nós para discutir como você pode usar IA para otimizar o dimensionamento de posições e a quantidade de ordens, a fim de maximizar o retorno do seu portfólio. Vamos mostrar como identificar, de forma algorítmica, um portfólio ideal e adaptar seu portfólio conforme sua expectativa de retorno ou níveis de tolerância ao risco. Nesta discussão, vamos utilizar a biblioteca SciPy e a linguagem MQL5 para criar um portfólio ideal e diversificado usando todos os dados que temos.

Redes neurais de maneira fácil (Parte 91): previsão na área de frequência (FreDF)
Continuamos a explorar a análise e previsão de séries temporais na área de frequência. E nesta matéria, apresentaremos um novo método de previsão nessa área, que pode ser adicionado a muitos dos algoritmos que já estudamos anteriormente.

Reimaginando Estratégias Clássicas em MQL5 (Parte II): FTSE100 e Títulos Públicos do Reino Unido
Nesta série de artigos, exploramos estratégias de negociação populares e tentamos melhorá-las usando IA. No artigo de hoje, revisitamos a estratégia clássica de negociação baseada na relação entre o mercado de ações e o mercado de títulos.

Colmeia artificial de abelhas — Artificial Bee Hive Algorithm (ABHA): Teoria e métodos
Neste artigo, exploramos o algoritmo Artificial Bee Hive Algorithm (ABHA), desenvolvido em 2009. Voltado para a solução de problemas de otimização contínua, o algoritmo é utilizado para encontrar o melhor caminho entre dois pontos. Analisaremos como o ABHA se inspira no comportamento das colônias de abelhas, no qual cada abelha desempenha um papel único que contribui para uma busca mais eficiente por recursos.

Do básico ao intermediário: União (II)
Este será um artigo muito divertido e bastante curioso em diversos aspectos. Ele abordará a união para resolver um problema discutido anteriormente. Além disso, exploraremos algumas situações inusitadas que podem surgir ao usar uma união em aplicativos. O conteúdo exposto aqui visa pura e simplesmente a didática. De modo algum deve ser encarado como uma aplicação cuja finalidade não seja o aprendizado e estudo dos conceitos mostrados.

Algoritmo de Fechadura Codificada (Code Lock Algorithm, CLA)
Neste artigo, vamos repensar as fechaduras codificadas, transformando-as de mecanismos de proteção em ferramentas para resolver tarefas complexas de otimização. Descubra o mundo das fechaduras codificadas, não como simples dispositivos de segurança, mas como inspiração para uma nova abordagem à otimização. Vamos criar uma população inteira de "fechaduras", onde cada uma representa uma solução única para um problema. Em seguida, desenvolveremos um algoritmo que "destrancará" essas fechaduras e encontrará soluções ideais em várias áreas, desde o aprendizado de máquina até o desenvolvimento de sistemas de trading.

Desenvolvendo um sistema de Replay (Parte 62): Dando play no serviço (III)
Neste artigo começaremos a resolver, o detalhe sobre o excesso de ticks, que pode acometer a aplicação, quando usamos dados reais. Tal excesso faz com que o serviço muitas das vezes dificulta a correta temporização a fim de conseguir construir a barra de um minuto dentro da janela adequada.

Hibridização de algoritmos populacionais. Estruturas sequenciais e paralelas
Aqui, vamos mergulhar no mundo da hibridização de algoritmos de otimização, analisando três tipos principais: mistura de estratégias, hibridização sequencial e paralela. Realizaremos uma série de experimentos combinando e testando algoritmos de otimização relevantes.

Reimaginando Estratégias Clássicas (Parte II): Rompimentos das Bandas de Bollinger
Este artigo explora uma estratégia de trading que integra a Análise Discriminante Linear (LDA) com Bandas de Bollinger, aproveitando previsões de zonas categóricas para gerar sinais estratégicos de entrada no mercado.

Algoritmos de otimização populacional: Mudamos a forma e deslocamos as distribuições de probabilidade e testamos com o "Cabeçudinho Inteligente" (Smart Cephalopod, SC)
Com este artigo investigaremos como a mudança de forma das distribuições de probabilidade afetam o desempenho dos algoritmos de otimização. Realizaremos experimentos baseados no algoritmo de teste "cabeçudinho inteligente" (Smart Cephalopod, SC) para avaliar o desempenho de diferentes distribuições de probabilidade no contexto de tarefas de otimização.

Algoritmo da Cauda de Cometa (Comet Tail Algorithm, CTA)
Neste artigo, vamos explorar o novo algoritmo de otimização autoral CTA (Comet Tail Algorithm), que se inspira em objetos cósmicos únicos, nomeadamente em cometas e suas impressionantes caudas, formadas quando se aproximam do Sol. Esse algoritmo é baseado no conceito de movimento dos cometas e suas caudas, e foi projetado para encontrar soluções ótimas em problemas de otimização.

Do básico ao intermediário: Array (II)
Neste artigo vamos ver o que seria um array dinâmico e um array estático. Existe diferença em usar um ou outro? Ou ambos são sempre a mesma coisa? Quando devo usar um e quando usar o outro? E os arrays constantes? Por que eles existem e qual o risco que estou correndo, quando não inicializo todos os valores de um array? Pressupondo que eles serão iguais a zero. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como uma aplicação final, onde o objetivo não seja o estudo dos conceitos aqui mostrados.

Algoritmos de otimização populacionais: algoritmo híbrido de otimização de forrageamento bacteriano com algoritmo genético (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)
Este artigo apresenta uma nova abordagem para resolver problemas de otimização, combinando as ideias dos algoritmos de otimização de forrageamento bacteriano (BFO) com as técnicas usadas no algoritmo genético (GA), resultando no algoritmo híbrido BFO-GA. Ele utiliza o comportamento de enxameamento das bactérias para a busca global da solução ótima e operadores genéticos para refinar os ótimos locais. Ao contrário do BFO original, as bactérias agora podem mutar e herdar genes.

Do básico ao intermediário: Array (IV)
Neste artigo iremos ver como podemos fazer algo muito parecido com o encontrado em linguagens como C, C++ e Java. Onde podemos enviar um número quase infinito de parâmetros para dentro de uma função ou procedimento. Apesar de aparentemente ser um tópico avançado. Na minha visão, o que será visto aqui, pode muito bem ser implementado por qualquer iniciante. Desde que ele tenha compreendido os conceitos vistos arteriormente. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.

DoEasy. Controles (Parte 25): Objeto WinForms Tooltip
Neste artigo, começaremos a desenvolver o controle Tooltip (dica de ferramenta) e começaremos a criar novas primitivas gráficas para a biblioteca. Naturalmente, nem todo elemento tem uma dica de ferramenta, mas todo objeto gráfico pode ter uma.

Monitoramento de Trading com Notificações-Push — Exemplo de Serviço no MetaTrader 5
Neste artigo, analisaremos a criação de um programa de serviço para enviar notificações para um smartphone sobre os resultados do trading. No decorrer do artigo, aprenderemos a trabalhar com listas de objetos da Biblioteca Padrão para facilitar a seleção de objetos com as propriedades necessárias.

Do básico ao intermediário: Objetos (I)
Neste artigo, começarmos a ver como poderemos trabalhar com objetos diretamente no gráfico. Isto utilizando um código construído especialmente para apresentar algo a nós. Trabalhar com objetos é algo muito interessante e bastante divertido. Como este será o primeiro contato. Iremos começar com algo bem simples.

Do básico ao intermediário: Estruturas (VII)
Neste artigo, será mostrado como podemos lidar com problemas de forma a estruturar as coisas, a fim de criar uma solução mais fácil e atrativa. Apesar do conteúdo ser voltado para a didática, não representando assim um código real. Os conceitos e conhecimento vistos aqui, precisam de fato ser muito bem assimilados. Isto para que no futuro, você consiga acompanhar os códigos que iremos mostrar.

Desenvolvendo um sistema de Replay (Parte 58): Voltando a trabalhar no serviço
Depois de ter dado um tempo no desenvolvimento e aperfeiçoamento do serviço usado no replay / simulação. Iremos voltar a trabalhar nele. Mas como já não iremos mais usar alguns recursos, como as variáveis globais de terminal, se torna necessário uma completa reestruturação de algumas partes do mesmo. Mas não fiquem aflitos, tal processo será adequadamente explicado, para que todos consigam de fato acompanhar o desenrolar do desenvolvimento do serviço.

Do básico ao intermediário: Definições (I)
Neste artigo, faremos diversas coisas, que para muitos irão parecer estranho e totalmente fora de contexto. Mas que ser for bem empregado tornará seu aprendo muito mais divertido e empolgante. Já que podemos construir coisas bem interessantes, com base no que será visto aqui. A ponto de permitir uma melhor assimilação da sintaxe da linguagem MQL5. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.

Otimização por Quimiotaxia Bacteriana (BCO)
Este artigo apresenta a versão original do algoritmo de otimização por quimiotaxia bacteriana (Bacterial Chemotaxis Optimization, BCO) e sua variante modificada. Examinaremos detalhadamente todas as diferenças, com foco especial na nova versão BCOm, que simplifica o mecanismo de movimento das bactérias, reduz a dependência do histórico de mudanças de posição e emprega operações matemáticas mais simples em comparação com a versão original, que possui um alto custo computacional. Além disso, serão realizados testes e apresentadas conclusões.

Desenvolvendo um sistema de Replay (Parte 54): O nascimento do primeiro módulo
Neste artigo, iremos ver como construir o primeiro dos módulos, realmente funcional a fim de ser utilizado no sistema de replay / simulador. Além de ter como proposito geral servir para outras coisas também. O módulo que será construído aqui será o do indicador de mouse.

Algoritmo de otimização baseado em brainstorming — Brain Storm Optimization (Parte II): Multimodalidade
Na segunda parte do artigo, vamos para a implementação prática do algoritmo BSO, realizaremos testes com funções de teste e compararemos a eficiência do BSO com outros métodos de otimização.

Filtragem e extração de características no domínio da frequência
Neste artigo, vamos explorar a aplicação de filtros digitais em séries temporais representadas no domínio da frequência, com o objetivo de extrair características únicas que podem ser úteis para modelos de previsão.

Do básico ao intermediário: Precedência de operadores
Este é com toda a certeza, o assunto mais complicado de explicar somente utilizando a parte teórica do mesmo. Sendo assim, aconselho a você, meu caro leitor, procurar praticar o que será mostrado aqui. Mesmo quando tudo parece simples a principio, esta questão sobre operadores, de fato, somente será bem compreendida com a pratica aliada ao estudo constante. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.

Do básico ao intermediário: Struct (I)
Que tal começarmos a estudar estruturas de uma forma bem mais simples, prática e agradável? Isto por que estruturas é um dos fundamentos, ou pilares da programação. Seja ela estruturada ou não. Sei que muitos acham que estruturas são apenas coleções de dados. Mas posso garantir que elas são muito mais do que isto. E aqui iremos começar a explorar este novo universo, de uma maneira que seja a mais didática possível.

Desenvolvendo um sistema de Replay (Parte 61): Dando play no serviço (II)
Acompanhe neste artigo, as modificações que foram necessárias serem feitas, para que o serviço de replay / simulação, pudesse trabalhar de forma mais eficiente e segura. Aqui também, irei mostrar algo que pode ser de grande interesse para quem deseja fazer um uso mais eficiente das classes. Além de falar e explicar como contornar um problema que existe no MQL5, que reduz a performance do código quando usamos classes.

Desenvolvendo um sistema de Replay (Parte 64): Dando play no serviço (V)
Neste artigo irei mostrar como corrigir duas falhas que se encontram presentes no código. No entanto tais correções foram explicadas para que você, aspirante a programador, consiga entender que nem sempre as coisas irão acontecer como você havia previsto. Mas isto não é motivo para desespero e sim uma oportunidade de aprendizado. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.

Desenvolvendo um sistema de Replay (Parte 75): Um novo Chart Trade (II)
Neste artigo explicarei grande parte da classe C_ChartFloatingRAD. Esta é responsável por fazer com que o Chart Trade funcione. Porém aqui não irei de fato terminar a explicação. A mesma será finalizada no próximo artigo. Já que o conteúdo neste artigo é bastante denso e precisa ser compreendido a fundo. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.

Criando um Painel Administrativo de Negociação em MQL5 (Parte II): Aprimorando a Responsividade e Mensagens Rápidas
Neste artigo, vamos aprimorar a responsividade do Painel Administrativo que criamos anteriormente. Além disso, vamos explorar a importância das mensagens rápidas no contexto de sinais de negociação.

Do básico ao intermediário: Array e String (III)
Neste artigo iremos ver duas coisas. A primeira é como a biblioteca padrão consegue transformar valores binários em outras formas de representação, como octal, decimal e hexadecimal. A segunda coisa será a de como poderíamos com o conhecimento mostrado até aqui, definir uma largura para nossa senha, baseada em uma frase secreta. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.

Teoria das Categorias em MQL5 (Parte 4): Intervalos, experimentos e composições
A teoria das categorias representa um segmento diversificado e em constante expansão da matemática, que até agora está relativamente pouco explorado na comunidade MQL5. Esta série de artigos tem como objetivo descrever alguns de seus conceitos a fim de criar uma biblioteca aberta e utilizar ainda mais essa seção notável na criação de estratégias de negociação.

Reimaginando Estratégias Clássicas (Parte IV): SP500 e Notas do Tesouro dos EUA
Nesta série de artigos, analisamos estratégias clássicas de negociação usando algoritmos modernos para determinar se podemos melhorar a estratégia utilizando IA. No artigo de hoje, revisamos uma abordagem clássica para negociar o SP500 usando a relação que ele tem com as Notas do Tesouro dos EUA.

Simulação de mercado (Parte 10): Sockets (IV)
Aqui neste artigo mostrei o que você precisa fazer para começar a usar o Excel para controlar o MetaTrader 5. Mas faremos isto de uma forma bastante interessante. Para fazer isto iremos usar um Add-in no Excel. Isto para não precisar de fato fazer uso do VBA presente no Excel. Se você não sabe de que Add-in estou falando. Veja este artigo e aprenda como fazer para programar em Python diretamente dentro do Excel.

Do básico ao intermediário: Eventos (I)
Com base em tudo que já foi mostrado e visto até este ponto. Acredito que já podemos começar a implementar algum tipo de aplicação para ser executada diretamente no gráfico de algum ativo. Mas antes mesmo de podermos fazer isto, precisamos falar de uma coisa que para iniciantes é bastante confusa. Que é justamente o fato de que o aplicações desenvolvidas em MQL5, e voltadas para serem vistas em um gráfico, não são criadas da mesma forma que vimos até este momento. Neste artigo começaremos a entender um pouco melhor sobre isto.

Algoritmos de otimização populacionais: algoritmo genético binário (Binary Genetic Algorithm, BGA). Parte I
Neste artigo, vamos realizar um estudo sobre vários métodos aplicados em algoritmos genéticos binários e outros algoritmos populacionais. Vamos examinar os componentes principais do algoritmo, como seleção, crossover e mutação, bem como seu impacto no processo de otimização. Além disso, vamos explorar as formas de representação de informações e seu impacto nos resultados de otimização.

Construindo Expert Advisors Auto-otimizantes Com MQL5 E Python (Parte II): Ajustando Redes Neurais Profundas
Modelos de aprendizado de máquina vêm com vários parâmetros ajustáveis. Nesta série de artigos, exploraremos como personalizar seus modelos de IA para se ajustar ao seu mercado específico utilizando a biblioteca SciPy.

Desenvolvendo um sistema de Replay (Parte 72): Uma comunicação inusitada (I)
O que iremos construir será complexo de entender. Por isso, apresentarei apenas o início da construção neste artigo. Leia com calma, pois entender o conteúdo aqui é essencial para o próximo passo. O objetivo deste conteúdo é apenas didático, sem aplicação prática além do aprendizado e estudo dos conceitos apresentados.

Do básico ao intermediário: Indicador (V)
Neste artigo, iremos ver como podemos lidar com requerimentos do usuário a fim de mudar o modo de plotagem do gráfico. Isto para que consigamos fazer com que um indicador, voltado a utilizar o modo de plotagem gráfica atual, não fique estranho ou diferente do que seria esperado pelo usuário do MetaTrader 5.

Anotação de dados na análise de série temporal (Parte 6): Aplicação e teste de EA com ONNX
Nesta série de artigos, apresentamos vários métodos de anotação de séries temporais, que podem criar dados adequados à maioria dos modelos de inteligência artificial (IA). A anotação de dados direcionada pode tornar o modelo de IA treinado mais alinhado aos objetivos e tarefas do usuário, aumentar a precisão do modelo e até ajudar o modelo a alcançar um salto qualitativo!