English Русский 中文 Español Deutsch 日本語
preview
Arbitragem Estatística com previsões

Arbitragem Estatística com previsões

MetaTrader 5Sistemas de negociação |
579 0
Javier Santiago Gaston De Iriarte Cabrera
Javier Santiago Gaston De Iriarte Cabrera

Introdução

A arbitragem estatística é uma estratégia financeira sofisticada que utiliza modelos matemáticos para aproveitar ineficiências de preços entre instrumentos financeiros relacionados. Tipicamente aplicada a ações, títulos ou derivativos, essa abordagem requer uma compreensão profunda de correlação, cointegração e do coeficiente de Pearson, ferramentas essenciais para identificar e explorar oportunidades de mercado.

Correlação em finanças mede o quão estreitamente dois valores mobiliários se movem em relação um ao outro, quantificando o grau de relação entre eles. Correlação positiva indica que os valores mobiliários geralmente se movem na mesma direção, enquanto correlação negativa significa que se movem em direções opostas. Os traders analisam essas relações para prever movimentos futuros de preços.

Cointegração, uma propriedade estatística mais complexa, vai além da correlação, examinando se uma combinação linear de duas ou mais variáveis de séries temporais permanece estável ao longo do tempo. Em termos mais simples, enquanto os valores mobiliários individuais podem seguir caminhos diferentes, seus movimentos relativos estão interligados por algum equilíbrio, ao qual tendem a retornar. Este conceito é crucial no trading de pares, onde o objetivo é identificar pares de ações cujos preços se movem juntos historicamente e espera-se que continuem assim.

Coeficiente de Pearson é uma medida estatística que calcula a força e a direção da relação linear entre duas variáveis. Os valores do coeficiente de Pearson variam de -1 a 1, onde 1 indica uma relação linear positiva perfeita, -1 uma relação linear negativa perfeita, e 0 nenhuma relação linear. Na arbitragem estatística, um alto valor absoluto do coeficiente de Pearson entre dois ativos pode sugerir uma oportunidade de negociação, presumindo que eles retornarão a uma relação média de longo prazo.

Traders que implementam estratégias de arbitragem estatística dependem de algoritmos e sistemas de trading de alta frequência para monitorar e executar negociações. Esses sistemas são capazes de processar grandes quantidades de dados para detectar rapidamente anomalias nas relações de preços dos ativos. A estratégia assume que os preços dos ativos correlacionados convergirão para sua média histórica, permitindo que o trader obtenha lucro com os ajustes de preço.

No entanto, o sucesso da arbitragem estatística depende não apenas de modelos matemáticos sofisticados, mas também da capacidade do trader de interpretar dados e ajustar estratégias com base nas condições de mercado em mudança. Fatores como mudanças econômicas repentinas, sentimento do mercado ou eventos políticos podem interromper até mesmo as relações mais estáveis, introduzindo níveis mais elevados de risco.


Explicação com Exemplos Simples

Correlação mede como duas coisas estão relacionadas. Imagine que você e seu melhor amigo sempre vão ao cinema juntos aos sábados. Isso é um exemplo de correlação: quando você vai ao cinema, seu amigo também está lá. Se a correlação for positiva, significa que quando um aumenta, o outro também aumenta. Se for negativa, um aumenta enquanto o outro diminui. Se a correlação for zero, significa que não há conexão entre os dois.

Cointegração é um conceito estatístico usado para descrever uma situação em que duas ou mais variáveis têm alguma relação de longo prazo, mesmo que possam flutuar independentemente no curto prazo. Imagine dois nadadores amarrados juntos por uma corda: eles podem nadar livremente na piscina, mas não podem se afastar muito um do outro. A cointegração indica que, apesar de diferenças temporárias, essas variáveis sempre retornarão a um equilíbrio ou tendência de longo prazo comum.

Coeficiente de Pearson mede quão linearmente relacionadas duas variáveis estão. Se o coeficiente estiver próximo de +1, indica uma dependência direta: à medida que uma variável aumenta, a outra também aumenta. Um coeficiente próximo de -1 significa que, à medida que uma aumenta, a outra diminui, indicando uma relação inversa. Um valor de 0 significa nenhuma conexão linear. Por exemplo, medir a temperatura e o número de vendas de bebidas geladas pode ajudar a entender como esses fatores estão relacionados usando o Coeficiente de Pearson.

Em resumo, a arbitragem estatística é uma estratégia de negociação complexa, mas potencialmente lucrativa, que combina elementos de economia, finanças e matemática. Ela requer não apenas uma compreensão de conceitos estatísticos avançados, mas também a capacidade de implantar algoritmos de alta velocidade para análise e execução no mercado.


Cálculos

Para saber quais pares são cointegrados e correlacionados, você pode usar este código .py.

import MetaTrader5 as mt5
import pandas as pd
from scipy.stats import pearsonr
from statsmodels.tsa.stattools import coint
import numpy as np

# Connect with MetaTrader 5
if not mt5.initialize():
    print("Failed to initialize MT5")
    mt5.shutdown()

# Get the list of symbols
symbols = mt5.symbols_get()
symbols = [s.name for s in symbols if s.name.startswith('EUR') or s.name.startswith('USD') or s.name.endswith('USD')]  # Filtrar símbolos por ejemplo

# Download historical data and save in dictionary
data = {}
for symbol in symbols:
    rates = mt5.copy_rates_from_pos(symbol, mt5.TIMEFRAME_D1, 0, 365)  # Último año, diario
    if rates is not None:
        df = pd.DataFrame(rates)
        df['time'] = pd.to_datetime(df['time'], unit='s')
        data[symbol] = df.set_index('time')['close']

# Close connection with MT5
mt5.shutdown()

# Calculate the Pearson coefficient and test for cointegration for each pair of symbols
cointegrated_pairs = []
for i in range(len(symbols)):
    for j in range(i + 1, len(symbols)):
        if symbols[i] in data and symbols[j] in data:
            common_index = data[symbols[i]].index.intersection(data[symbols[j]].index)
            if len(common_index) > 30:  # Asegurarse de que hay suficientes puntos de datos
                corr, _ = pearsonr(data[symbols[i]][common_index], data[symbols[j]][common_index])
                if abs(corr) > 0.8:  # Correlación fuerte
                    score, p_value, _ = coint(data[symbols[i]][common_index], data[symbols[j]][common_index])
                    if p_value < 0.05:  # P-valor menor que 0.05
                        cointegrated_pairs.append((symbols[i], symbols[j], corr, p_value))

# Filter and show only cointegrated pairs with p-value less than 0.05
print(f'Total pairs with strong correlation and cointegration: {len(cointegrated_pairs)}')
for sym1, sym2, corr, p_val in cointegrated_pairs:
    print(f'{sym1} - {sym2}: Correlación={corr:.4f}, P-valor de Cointegración={p_val:.4f}')

Aqui está a tradução e adaptação do trecho:

Total pairs with strong correlation and coitegration: 54
EURUSD - USDBGN: Correlación=-0.9957, P-valor de Cointegración=0.0000
EURUSD - USDHRK: Correlación=-0.9972, P-valor de Cointegración=0.0000
GBPUSD - USDPLN: Correlación=-0.8633, P-valor de Cointegración=0.0406
GBPUSD - GBXUSD: Correlación=0.9998, P-valor de Cointegración=0.0000
GBPUSD - EURSGD: Correlación=0.8061, P-valor de Cointegración=0.0191
USDCHF - EURCHF: Correlación=0.8324, P-valor de Cointegración=0.0356
USDJPY - EURDKK: Correlación=0.8338, P-valor de Cointegración=0.0200
USDJPY - USDTHB: Correlación=0.9012, P-valor de Cointegración=0.0330
AUDUSD - USDCNH: Correlación=-0.8074, P-valor de Cointegración=0.0390
EURCHF - USDKES: Correlación=-0.9104, P-valor de Cointegración=0.0048
EURJPY - EURRON: Correlación=0.8177, P-valor de Cointegración=0.0333
EURJPY - USDCOP: Correlación=-0.9361, P-valor de Cointegración=0.0125
EURJPY - USDLAK: Correlación=0.9508, P-valor de Cointegración=0.0410
EURJPY - EURDKK: Correlación=0.8525, P-valor de Cointegración=0.0136
EURJPY - EURMXN: Correlación=-0.8785, P-valor de Cointegración=0.0172
EURJPY - USDTRY: Correlación=0.9564, P-valor de Cointegración=0.0102
EURNZD - NZDUSD: Correlación=-0.8505, P-valor de Cointegración=0.0455
EURNZD - EURDKK: Correlación=0.8242, P-valor de Cointegración=0.0017
EURCZK - USDCLP: Correlación=0.9655, P-valor de Cointegración=0.0001
USDCLP - USDCZK: Correlación=0.8972, P-valor de Cointegración=0.0147
USDCLP - USDARS: Correlación=0.8077, P-valor de Cointegración=0.0231
USDCLP - USDIDR: Correlación=0.8569, P-valor de Cointegración=0.0423
USDCLP - USDNGN: Correlación=0.8468, P-valor de Cointegración=0.0436
USDCLP - USDVND: Correlación=0.9021, P-valor de Cointegración=0.0194
USDCZK - USDIDR: Correlación=0.9005, P-valor de Cointegración=0.0086
USDCZK - USDVND: Correlación=0.8306, P-valor de Cointegración=0.0195
USDMXN - USDCOP: Correlación=0.8686, P-valor de Cointegración=0.0286
USDMXN - EURMXN: Correlación=0.9522, P-valor de Cointegración=0.0328
NZDUSD - USDSGD: Correlación=-0.8145, P-valor de Cointegración=0.0097
NZDUSD - USDTHB: Correlación=-0.8094, P-valor de Cointegración=0.0255
ADAUSD - KSMUSD: Correlación=0.9429, P-valor de Cointegración=0.0071
ALGUSD - LNKUSD: Correlación=0.8038, P-valor de Cointegración=0.0454
ATMUSD - MTCUSD: Correlación=0.9423, P-valor de Cointegración=0.0146
BTCUSD - SOLUSD: Correlación=0.9736, P-valor de Cointegración=0.0112
DGEUSD - GLDUSD: Correlación=0.8933, P-valor de Cointegración=0.0136
DGEUSD - USDGHS: Correlación=0.8562, P-valor de Cointegración=0.0101
EOSUSD - UNIUSD: Correlación=0.8176, P-valor de Cointegración=0.0051
ETCUSD - ETHUSD: Correlación=0.9745, P-valor de Cointegración=0.0009
ETCUSD - SOLUSD: Correlación=0.9206, P-valor de Cointegración=0.0093
ETCUSD - UNIUSD: Correlación=0.9236, P-valor de Cointegración=0.0249
ETHUSD - SOLUSD: Correlación=0.9430, P-valor de Cointegración=0.0074
UNIUSD - USDNGN: Correlación=0.8074, P-valor de Cointegración=0.0195
EURNOK - USDNOK: Correlación=0.9065, P-valor de Cointegración=0.0430
EURRON - USDCOP: Correlación=-0.8010, P-valor de Cointegración=0.0097
EURRON - USDCRC: Correlación=-0.8015, P-valor de Cointegración=0.0159
EURRON - USDLAK: Correlación=0.8364, P-valor de Cointegración=0.0349
GBXUSD - EURSGD: Correlación=0.8067, P-valor de Cointegración=0.0180
USDARS - USDVND: Correlación=0.8093, P-valor de Cointegración=0.0268
USDBGN - USDHRK: Correlación=0.9944, P-valor de Cointegración=0.0000
USDCOP - USDTRY: Correlación=-0.9548, P-valor de Cointegración=0.0160
USDCRC - EURDKK: Correlación=-0.8519, P-valor de Cointegración=0.0153
USDHRK - USDDKK: Correlación=0.9954, P-valor de Cointegración=0.0000
USDIDR - USDVND: Correlación=0.8196, P-valor de Cointegración=0.0417
USDSEK - USDSGD: Correlación=0.8346, P-valor de Cointegración=0.0264

Assim, os pares já estão filtrados.

Para verificar esses valores no MetaTrader 5, temos este Indicador (Pearson.mq5):

//+------------------------------------------------------------------+
//|                                             PearsonIndicator.mq5 |
//|                    Copyright Javier S. Gastón de Iriarte Cabrera |
//|                                       https://www.mql5.com/en/users/jsgaston/news |
//+------------------------------------------------------------------+
#property copyright "Javier S. Gastón de Iriarte Cabrera"
#property link      "https://www.mql5.com/en/users/jsgaston/news/"
#property version   "1.00"
#property indicator_separate_window
#property indicator_buffers 1
#property indicator_color1 Red

input string Symbol2 = "GBPUSD";       // Second financial instrument
input int BarsBack = 100;              // Number of bars to include in correlation calculation

double CorrelationBuffer[];

//+------------------------------------------------------------------+
//| Custom indicator initialization function                         |
//+------------------------------------------------------------------+
int OnInit()
  {
   SetIndexBuffer(0, CorrelationBuffer, INDICATOR_DATA);
   PlotIndexSetInteger(0, PLOT_DRAW_TYPE, DRAW_LINE);
   PlotIndexSetString(0, PLOT_LABEL, "Pearson Correlation");
   IndicatorSetString(INDICATOR_SHORTNAME, "Pearson Correlation (" + Symbol() + " & " + Symbol2 + ")");
   return INIT_SUCCEEDED;
  }

//+------------------------------------------------------------------+
//| Custom indicator iteration function                              |
//+------------------------------------------------------------------+
int OnCalculate(const int rates_total,
                const int prev_calculated,
                const datetime &time[],
                const double &open[],
                const double &high[],
                const double &low[],
                const double &close[],
                const long &tick_volume[],
                const long &volume[],
                const int &spread[])
  {
   if (rates_total < BarsBack) return 0; // Ensure enough bars are present

   double prices1[], prices2[];
   ArrayResize(prices1, BarsBack);
   ArrayResize(prices2, BarsBack);

   // Copy historical data for primary symbol
   if (CopyClose(Symbol(), PERIOD_CURRENT, 0, BarsBack, prices1) <= 0)
      {
       Print("Error copying prices for ", Symbol());
       return 0;
      }
   // Copy historical data for secondary symbol
   if (CopyClose(Symbol2, PERIOD_CURRENT, 0, BarsBack, prices2) <= 0)
      {
       Print("Error copying prices for ", Symbol2);
       return 0;
      }

   // Calculate Pearson correlation for the entire buffer
   double correlation = CalculatePearsonCorrelation(prices1, prices2);
   Print("Pearson correlation: ", correlation);

   // Fill the buffer for the indicator
   for (int i = BarsBack; i < rates_total; i++)
     {
      CorrelationBuffer[i] = correlation;  // Update the buffer correctly
     }

   return(rates_total);
  }

//+------------------------------------------------------------------+
//| Calculate Pearson correlation coefficient                        |
//+------------------------------------------------------------------+
double CalculatePearsonCorrelation(double &prices1[], double &prices2[])
  {
   int length = BarsBack;
   double mean1 = 0, mean2 = 0;
   double sum1 = 0, sum2 = 0, sumProd = 0, stdev1 = 0, stdev2 = 0;

   for (int i = 0; i < length; i++)
     {
      mean1 += prices1[i];
      mean2 += prices2[i];
     }
   mean1 /= length;
   mean2 /= length;

   for (int i = 0; i < length; i++)
     {
      double dev1 = prices1[i] - mean1;
      double dev2 = prices2[i] - mean2;
      sum1 += dev1 * dev1;
      sum2 += dev2 * dev2;
      sumProd += dev1 * dev2;
     }
   stdev1 = sqrt(sum1);
   stdev2 = sqrt(sum2);

   if (stdev1 == 0 || stdev2 == 0) return 0; // Avoid division by zero
   return sumProd / (stdev1 * stdev2);
  }
//+------------------------------------------------------------------+

Isso mostra resultados como estes:

Pearson


Criar modelos ONNX

Uma vez que conhecemos os pares de símbolos que são correlacionados e cointegrados, e após verificarmos o coeficiente de Pearson no mql5, podemos criar um modelo ONNX para estudar os dois pares no passado.

# python libraries
import MetaTrader5 as mt5
import tensorflow as tf
import numpy as np
import pandas as pd
import tf2onnx

# input parameters

inp_history_size = 120

sample_size = 120*20
symbol = "AUDUSD"
optional = "D1"
inp_model_name = str(symbol)+"_"+str(optional)+".onnx" 

if not mt5.initialize():
    print("initialize() failed, error code =",mt5.last_error())
    quit()

# we will save generated onnx-file near the our script to use as resource
from sys import argv
data_path=argv[0]
last_index=data_path.rfind("\\")+1
data_path=data_path[0:last_index]
print("data path to save onnx model",data_path)

# and save to MQL5\Files folder to use as file
terminal_info=mt5.terminal_info()
file_path=terminal_info.data_path+"\\MQL5\\Files\\"
print("file path to save onnx model",file_path)

# set start and end dates for history data
from datetime import timedelta, datetime
#end_date = datetime.now()
end_date = datetime(2023, 1, 1, 0)
start_date = end_date - timedelta(days=inp_history_size*20)

# print start and end dates
print("data start date =",start_date)
print("data end date =",end_date)

# get rates
eurusd_rates = mt5.copy_rates_from(symbol, mt5.TIMEFRAME_D1, end_date, sample_size)

# create dataframe
df = pd.DataFrame(eurusd_rates)

# get close prices only
data = df.filter(['close']).values

# scale data
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler(feature_range=(0,1))
scaled_data = scaler.fit_transform(data)

# training size is 80% of the data
training_size = int(len(scaled_data)*0.80) 
print("Training_size:",training_size)
train_data_initial = scaled_data[0:training_size,:]
test_data_initial = scaled_data[training_size:,:1]

# split a univariate sequence into samples
def split_sequence(sequence, n_steps):
    X, y = list(), list()
    for i in range(len(sequence)):
       # find the end of this pattern
       end_ix = i + n_steps
       # check if we are beyond the sequence
       if end_ix > len(sequence)-1:
          break
       # gather input and output parts of the pattern
       seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]
       X.append(seq_x)
       y.append(seq_y)
    return np.array(X), np.array(y)

# split into samples
time_step = inp_history_size
x_train, y_train = split_sequence(train_data_initial, time_step)
x_test, y_test = split_sequence(test_data_initial, time_step)

# reshape input to be [samples, time steps, features] which is required for LSTM
x_train =x_train.reshape(x_train.shape[0],x_train.shape[1],1)
x_test = x_test.reshape(x_test.shape[0],x_test.shape[1],1)



# define model
from keras.models import Sequential
from keras.layers import Dense, Activation, Conv1D, MaxPooling1D, Dropout, Flatten, LSTM
from keras.metrics import RootMeanSquaredError as rmse
from tensorflow.keras import callbacks
model = Sequential()
model.add(Conv1D(filters=256, kernel_size=2, activation='relu',padding = 'same',input_shape=(inp_history_size,1)))
model.add(MaxPooling1D(pool_size=2))
model.add(LSTM(100, return_sequences = True))
model.add(Dropout(0.3))
model.add(LSTM(100, return_sequences = False))
model.add(Dropout(0.3))
model.add(Dense(units=1, activation = 'sigmoid'))
model.compile(optimizer='adam', loss= 'mse' , metrics = [rmse()])

# Set up early stopping
early_stopping = callbacks.EarlyStopping(
    monitor='val_loss',
    patience=20,
    restore_best_weights=True,
)

# model training for 300 epochs
history = model.fit(x_train, y_train, epochs = 300 , validation_data = (x_test,y_test), batch_size=32, callbacks=[early_stopping], verbose=2)

# evaluate training data
train_loss, train_rmse = model.evaluate(x_train,y_train, batch_size = 32)
print(f"train_loss={train_loss:.3f}")
print(f"train_rmse={train_rmse:.3f}")

# evaluate testing data
test_loss, test_rmse = model.evaluate(x_test,y_test, batch_size = 32)
print(f"test_loss={test_loss:.3f}")
print(f"test_rmse={test_rmse:.3f}")

# save model to ONNX
output_path = data_path+inp_model_name
onnx_model = tf2onnx.convert.from_keras(model, output_path=output_path)
print(f"saved model to {output_path}")

output_path = file_path+inp_model_name
onnx_model = tf2onnx.convert.from_keras(model, output_path=output_path)
print(f"saved model to {output_path}")

# finish
mt5.shutdown()
#prediction using testing data

#prediction using testing data
test_predict = model.predict(x_test)
print(test_predict)
print("longitud total de la prediccion: ", len(test_predict))
print("longitud total del sample: ", sample_size)

plot_y_test = np.array(y_test).reshape(-1, 1)  # Selecciona solo el último elemento de cada muestra de prueba
plot_y_train = y_train.reshape(-1,1)
train_predict = model.predict(x_train)
#print(plot_y_test)

#calculate metrics
from sklearn import metrics
from sklearn.metrics import r2_score
#transform data to real values
value1=scaler.inverse_transform(plot_y_test)
#print(value1)
# Escala las predicciones inversas al transformarlas a la escala original
value2 = scaler.inverse_transform(test_predict.reshape(-1, 1))
#print(value2)
#calc score
score = np.sqrt(metrics.mean_squared_error(value1,value2))

print("RMSE         : {}".format(score))
print("MSE          :", metrics.mean_squared_error(value1,value2))
print("R2 score     :",metrics.r2_score(value1,value2))


#sumarize model
model.summary()

#Print error
value11=pd.DataFrame(value1)
value22=pd.DataFrame(value2)
#print(value11)
#print(value22)



value111=value11.iloc[:,:]
value222=value22.iloc[:,:]

print("longitud salida (tandas de 1 hora): ",len(value111) )
print("en horas son " + str((len(value111))*60*24)+ " minutos")
print("en horas son " + str(((len(value111)))*60*24/60)+ " horas")
print("en horas son " + str(((len(value111)))*60*24/60/24)+ " dias")


# Calculate error
error = value111 - value222

import matplotlib.pyplot as plt
# Plot error
plt.figure(figsize=(10, 6))
plt.scatter(range(len(error)), error, color='blue', label='Error')
plt.axhline(y=0, color='red', linestyle='--', linewidth=1)  # Línea horizontal en y=0
plt.title('Error de Predicción ' + str(symbol))
plt.xlabel('Índice de la muestra')
plt.ylabel('Error')
plt.legend()
plt.grid(True)
plt.savefig(str(symbol)+str(optional)+'.png') 

rmse_ = format(score)
mse_ = metrics.mean_squared_error(value1,value2)
r2_ = metrics.r2_score(value1,value2)

resultados= [rmse_,mse_,r2_]

# Abre un archivo en modo escritura
with open(str(symbol)+str(optional)+"results.txt", "w") as archivo:
    # Escribe cada resultado en una línea separada
    for resultado in resultados:
        archivo.write(str(resultado) + "\n")

# finish
mt5.shutdown()

#show iteration-rmse graph for training and validation
plt.figure(figsize = (18,10))
plt.plot(history.history['root_mean_squared_error'],label='Training RMSE',color='b')
plt.plot(history.history['val_root_mean_squared_error'],label='Validation-RMSE',color='g')
plt.xlabel("Iteration")
plt.ylabel("RMSE")
plt.title("RMSE" + str(symbol))
plt.legend()
plt.savefig(str(symbol)+str(optional)+'1.png') 

#show iteration-loss graph for training and validation
plt.figure(figsize = (18,10))
plt.plot(history.history['loss'],label='Training Loss',color='b')
plt.plot(history.history['val_loss'],label='Validation-loss',color='g')
plt.xlabel("Iteration")
plt.ylabel("Loss")
plt.title("LOSS" + str(symbol))
plt.legend()
plt.savefig(str(symbol)+str(optional)+'2.png') 

#show actual vs predicted (training) graph
plt.figure(figsize=(18,10))
plt.plot(scaler.inverse_transform(plot_y_train),color = 'b', label = 'Original')
plt.plot(scaler.inverse_transform(train_predict),color='red', label = 'Predicted')
plt.title("Prediction Graph Using Training Data" + str(symbol))
plt.xlabel("Hours")
plt.ylabel("Price")
plt.legend()
plt.savefig(str(symbol)+str(optional)+'3.png') 

#show actual vs predicted (testing) graph
plt.figure(figsize=(18,10))
plt.plot(scaler.inverse_transform(plot_y_test),color = 'b',  label = 'Original')
plt.plot(scaler.inverse_transform(test_predict),color='g', label = 'Predicted')
plt.title("Prediction Graph Using Testing Data" + str(symbol))
plt.xlabel("Hours")
plt.ylabel("Price")
plt.legend()
plt.savefig(str(symbol)+str(optional)+'4.png') 


Este arquivo .py resulta no modelo ONNX e em alguns gráficos e valores, como será mostrado abaixo. Precisaremos de ambos os modelos escolhidos a partir dos pares de correlação e cointegração que selecionamos:

error audusd





Os resultados são:

0.005679790676089899
3.226002212419775e-05
0.9670613229880559

Esses são RMSE, MSE e R2, respectivamente.


Back testing com Python

Você pode usar o seguinte código .py. Basta alterar a estratégia e verificar os resultados para o backtesting:

import MetaTrader5 as mt5
import pandas as pd
from scipy.stats import pearsonr
from statsmodels.tsa.stattools import coint
import numpy as np


# Función para la estrategia de Pairs Trading
def pairs_trading_strategy(data0, data1):
    spread = data0 - data1
    short_entry = np.mean(spread) - 2 * np.std(spread)
    short_exit = np.mean(spread)
    long_entry = np.mean(spread) + 2 * np.std(spread)
    long_exit = np.mean(spread)

    positions = []
    for i in range(len(spread)):
        if spread[i] > long_entry and (not positions or positions[-1][1] != 1):
            positions.append((spread[i], 1))
        elif spread[i] < short_entry and (not positions or positions[-1][1] != -1):
            positions.append((spread[i], -1))
        elif spread[i] < long_exit and positions and positions[-1][1] == 1:
            positions.append((spread[i], 0))
        elif spread[i] > short_exit and positions and positions[-1][1] == -1:
            positions.append((spread[i], 0))

    return positions


# Conectar con MetaTrader 5
if not mt5.initialize():
    print("No se pudo inicializar MT5")
    mt5.shutdown()

# Obtener la lista de símbolos
symbols = mt5.symbols_get()
symbols = [s.name for s in symbols if 'EUR' in s.name or 'USD' in s.name]  # Filtrar símbolos

data = {}
for symbol in symbols:
    rates = mt5.copy_rates_from_pos(symbol, mt5.TIMEFRAME_D1, 0, 365)
    if rates is not None:
        df = pd.DataFrame(rates)
        df['time'] = pd.to_datetime(df['time'], unit='s')  # Convertir a datetime
        df.set_index('time', inplace=True)
        data[symbol] = df['close']

mt5.shutdown()

# Identificar pares cointegrados
cointegrated_pairs = []
for i in range(len(symbols)):
    for j in range(i + 1, len(symbols)):
        if symbols[i] in data and symbols[j] in data:
            common_index = data[symbols[i]].index.intersection(data[symbols[j]].index)
            if len(common_index) > 30:
                corr, _ = pearsonr(data[symbols[i]][common_index], data[symbols[j]][common_index])
                if abs(corr) > 0.8:
                    score, p_value, _ = coint(data[symbols[i]][common_index], data[symbols[j]][common_index])
                    if p_value < 0.05:
                        cointegrated_pairs.append((symbols[i], symbols[j], corr, p_value))

print(cointegrated_pairs)

# Ejecutar estrategia de Pairs Trading para pares cointegrados
for sym1, sym2, _, _ in cointegrated_pairs:
    positions = []
    df0 = data[sym1]
    df1 = data[sym2]

    positions = pairs_trading_strategy(df0.values, df1.values)

    print(f'Backtesting completed for pair: {sym1} - {sym2}')
    print('Positions:', positions)


Teste de retorno com o MT5 Strategy Tester

Uma vez que temos os modelos ONNX, podemos rodar o EA. Escolhi usar uma estratégia simples, você pode escolher a estratégia que quiser ou precisar. Ficarei feliz se você compartilhar sua estratégia e os resultados.

Quando fiz isso pela primeira vez, NZDUSD e AUDUSD estavam cointegrados e correlacionados, mas no momento eles não passam no filtro (cointegração menor que 0,05). Para fins educacionais e para evitar a necessidade de criar novamente os modelos ONNX, continuarei com esses dois símbolos.

//+------------------------------------------------------------------+
//|                               Hybrid Arbitrage_Statistic ONNX.mq5|
//|           Copyright 2024, Javier S. Gastón de Iriarte Cabrera. |
//|                      https://www.mql5.com/en/users/jsgaston/news |
//+------------------------------------------------------------------+
#property copyright   "Copyright 2024, Javier S. Gastón de Iriarte Cabrera."
#property link        "https://www.mql5.com/en/users/jsgaston/news"
#property version     "1.00"

#property strict
#include <Trade\Trade.mqh>
input double lotSize = 0.1;
//input double slippage = 3;
input double stopLoss = 1500;
input double takeProfit = 1500;
//input double maxSpreadPoints = 10.0;

#resource "/Files/art/hybrid/NZDUSD_D1.onnx" as uchar ExtModel[]
#resource "/Files/art/hybrid/AUDUSD_D1.onnx" as uchar ExtModel2[]

#define SAMPLE_SIZE 120

string symbol1 = _Symbol;
input string symbol2 = "AUDUSD";
ulong ticket1 = 0;
ulong ticket2 = 0;
input bool isArbitrageActive = true;
CTrade ExtTrade;
double spreads[1000]; // Array para almacenar hasta 1000 spreads
int spreadIndex = 0; // Índice para el próximo spread a almacenar

long     ExtHandle=INVALID_HANDLE;
//int      ExtPredictedClass=-1;
datetime ExtNextBar=0;
datetime ExtNextDay=0;
float    ExtMin=0.0;
float    ExtMax=0.0;


long     ExtHandle2=INVALID_HANDLE;
//int      ExtPredictedClass=-1;
datetime ExtNextBar2=0;
datetime ExtNextDay2=0;
float    ExtMin2=0.0;
float    ExtMax2=0.0;

float predicted=0.0;
float predicted2=0.0;

float   lastPredicted1=0.0;
float   lastPredicted2=0.0;

int Order=0;
//+------------------------------------------------------------------+
//| Expert initialization function                                   |
//+------------------------------------------------------------------+
int OnInit()
  {
   Print("EA de arbitraje ONNX iniciado");

//--- create a model from static buffer
   ExtHandle=OnnxCreateFromBuffer(ExtModel,ONNX_DEFAULT);
   if(ExtHandle==INVALID_HANDLE)
     {
      Print("OnnxCreateFromBuffer error ",GetLastError());
      return(INIT_FAILED);
     }

//--- since not all sizes defined in the input tensor we must set them explicitly
//--- first index - batch size, second index - series size, third index - number of series (only Close)
   const long input_shape[] = {1,SAMPLE_SIZE,1};
   if(!OnnxSetInputShape(ExtHandle,ONNX_DEFAULT,input_shape))
     {
      Print("OnnxSetInputShape error ",GetLastError());
      return(INIT_FAILED);
     }

//--- since not all sizes defined in the output tensor we must set them explicitly
//--- first index - batch size, must match the batch size of the input tensor
//--- second index - number of predicted prices (we only predict Close)
   const long output_shape[] = {1,1};
   if(!OnnxSetOutputShape(ExtHandle,0,output_shape))
     {
      Print("OnnxSetOutputShape error ",GetLastError());
      return(INIT_FAILED);
     }


//--- create a model from static buffer
   ExtHandle2=OnnxCreateFromBuffer(ExtModel2,ONNX_DEFAULT);
   if(ExtHandle2==INVALID_HANDLE)
     {
      Print("OnnxCreateFromBuffer error ",GetLastError());
      return(INIT_FAILED);
     }

//--- since not all sizes defined in the input tensor we must set them explicitly
//--- first index - batch size, second index - series size, third index - number of series (only Close)
   const long input_shape2[] = {1,SAMPLE_SIZE,1};
   if(!OnnxSetInputShape(ExtHandle2,ONNX_DEFAULT,input_shape2))
     {
      Print("OnnxSetInputShape error ",GetLastError());
      return(INIT_FAILED);
     }

//--- since not all sizes defined in the output tensor we must set them explicitly
//--- first index - batch size, must match the batch size of the input tensor
//--- second index - number of predicted prices (we only predict Close)
   const long output_shape2[] = {1,1};
   if(!OnnxSetOutputShape(ExtHandle2,0,output_shape2))
     {
      Print("OnnxSetOutputShape error ",GetLastError());
      return(INIT_FAILED);
     }



   return(INIT_SUCCEEDED);
  }

//+------------------------------------------------------------------+
//| Expert deinitialization function                                 |
//+------------------------------------------------------------------+
void OnDeinit(const int reason)
  {
   if(ExtHandle!=INVALID_HANDLE)
     {
      OnnxRelease(ExtHandle);
      ExtHandle=INVALID_HANDLE;
     }

   if(ExtHandle2!=INVALID_HANDLE)
     {
      OnnxRelease(ExtHandle2);
      ExtHandle2=INVALID_HANDLE;
     }
  }

//+------------------------------------------------------------------+
//| Expert tick function                                             |
//+------------------------------------------------------------------+
void OnTick()
  {
//--- check new day
   if(TimeCurrent()>=ExtNextDay)
     {
      GetMinMax();
      GetMinMax2();
      //--- set next day time
      ExtNextDay=TimeCurrent();
      ExtNextDay-=ExtNextDay%PeriodSeconds(PERIOD_D1);
      ExtNextDay+=PeriodSeconds(PERIOD_D1);
      /*ExtTrade.PositionClose(symbol1);
      ExtTrade.PositionClose(symbol2);
      ticket1 = 0;
      ticket2 = 0;*/
     }

//--- check new bar
   if(TimeCurrent()<ExtNextBar)
     {

      return;
     }
//--- set next bar time
   ExtNextBar=TimeCurrent();
   ExtNextBar-=ExtNextBar%PeriodSeconds();
   ExtNextBar+=PeriodSeconds();
//--- check min and max
   float close=(float)iClose(symbol1,PERIOD_D1,0);
   if(ExtMin>close)
      ExtMin=close;
   if(ExtMax<close)
      ExtMax=close;
   float close2=(float)iClose(symbol2,PERIOD_D1,0);
   if(ExtMin2>close2)
      ExtMin2=close2;
   if(ExtMax2<close2)
      ExtMax2=close2;

   lastPredicted1=predicted;
   lastPredicted2=predicted2;

//--- predict next price
   PredictPrice();
   PredictPrice2();



   if(!isArbitrageActive || ArePositionsOpen())
     {
      Print("Arbitraje inactivo o ya hay posiciones abiertas.");
      return;
     }
   double price1 = SymbolInfoDouble(symbol1, SYMBOL_BID);
   double price2 = SymbolInfoDouble(symbol2, SYMBOL_ASK);
   double currentSpread = MathAbs(price1 - price2);
   Print("current spread ", currentSpread);
   Print("Price1 ",price1);
   Print("Price2 ",price2);
   Print("PricePredicted1 ",predicted);
   Print("PricePredicted2 ",predicted2);
   Print("Last PricePredicted1 ",lastPredicted1);
   Print("Last PricePredicted2 ",lastPredicted2);

   double predictedSpread = MathAbs(predicted - predicted2);
   Print("Predicted spread ", predictedSpread);

   double LastpredictedSpread = MathAbs(lastPredicted1 - lastPredicted2);
   Print("Last Predicted spread ", LastpredictedSpread);

// Almacenar el spread actual en el array y actualizar el índice
   spreads[spreadIndex % 1000] = currentSpread;
   spreadIndex++;

// Verifica si hay suficientes datos para calcular la desviación estándar
   int count = MathMin(spreadIndex, 1000); // Utiliza todos los datos disponibles hasta 1000
   double stdDevSpread = CalculateStdDev(spreads, 0, count);
//Print("StdDevSpread ", stdDevSpread);

// Verifica si el spread es lo suficientemente bajo para el arbitraje
   if(LastpredictedSpread< currentSpread)
     {
      // Inicia el arbitraje si aún no está activo
      if(isArbitrageActive)
        {
         //Print("max spread : ",maxSpreadPoints * _Point);
         double meanSpread = (lastPredicted1 + lastPredicted2) / 2.0;
         Print("mean spread: ",meanSpread);
         double stdDevSpread = CalculateStdDev(spreads, 0, ArraySize(spreads));
         Print("StdDevSpread ", stdDevSpread);
         double shortEntry = meanSpread - 2 * stdDevSpread ;

         double shortExit = meanSpread;
         double longEntry = meanSpread + 2 * stdDevSpread ;

         double longExit = meanSpread;

         Print("Long Entry: ", longEntry, " Short Entry: ", shortEntry);

         // Comprueba si la condición de entrada corta se cumple para el arbitraje
         if(price1 < shortEntry && (ticket1 == 0 || ticket2 == 0))
           {
            Print("Preparando para abrir órdenes");
            Order = 1;


            Print("Error al abrir posiciones de arbitraje: ", GetLastError());
            ticket1 = ExtTrade.PositionOpen(symbol1, ORDER_TYPE_BUY, lotSize, price1, price1 - stopLoss * _Point, price1 + takeProfit * _Point, "Arbitraje");
            ticket2 = ExtTrade.PositionOpen(symbol2, ORDER_TYPE_SELL, lotSize, price2, price2 + stopLoss * _Point, price2 - takeProfit * _Point, "Arbitraje");
            ticket1=0;
            ticket2=0;
           }
         else
            if(price2 < shortEntry && (ticket1 == 0 || ticket2 == 0))
              {
               Print("Preparando para abrir órdenes");
               Order = 2;


               Print("Error al abrir posiciones de arbitraje: ", GetLastError());
               ticket1 = ExtTrade.PositionOpen(symbol1, ORDER_TYPE_SELL, lotSize, price1, price1 + stopLoss * _Point, price1 - takeProfit * _Point, "Arbitraje");
               ticket2 = ExtTrade.PositionOpen(symbol2, ORDER_TYPE_BUY, lotSize, price2, price2 - stopLoss * _Point, price2 + takeProfit * _Point, "Arbitraje");
               ticket1=0;
               ticket2=0;
              }

            else
               if(price1 > longEntry && (ticket1 == 0 || ticket2 == 0))
                 {
                  Print("Preparando para abrir órdenes");
                  Order = 3;


                  Print("Error al abrir posiciones de arbitraje: ", GetLastError());
                  ticket1 = ExtTrade.PositionOpen(symbol1, ORDER_TYPE_SELL, lotSize, price1, price1 + stopLoss * _Point, price1 - takeProfit * _Point, "Arbitraje");
                  ticket2 = ExtTrade.PositionOpen(symbol2, ORDER_TYPE_BUY, lotSize, price2, price2 - stopLoss * _Point, price2 + takeProfit * _Point, "Arbitraje");
                  ticket1=0;
                  ticket2=0;
                 }
               else
                  if(price2 > longEntry && (ticket1 == 0 || ticket2 == 0))
                    {
                     Print("Preparando para abrir órdenes");
                     Order = 4;


                     Print("Error al abrir posiciones de arbitraje: ", GetLastError());

                     ticket1 = ExtTrade.PositionOpen(symbol1, ORDER_TYPE_BUY, lotSize, price1, price1 - stopLoss * _Point, price1 + takeProfit * _Point, "Arbitraje");
                     ticket2 = ExtTrade.PositionOpen(symbol2, ORDER_TYPE_SELL, lotSize, price2, price2 + stopLoss * _Point, price2 - takeProfit * _Point, "Arbitraje");
                     ticket1=0;
                     ticket2=0;
                    }

        }
     }
//+------------------------------------------------------------------+
//|                                                                  |
//+------------------------------------------------------------------+
   double meanSpread = (lastPredicted1 + lastPredicted2) / 2.0;
//Print("mean spread: ",meanSpread);
   double stdDevSpread2 = CalculateStdDev(spreads, 0, ArraySize(spreads));
//Print("StdDevSpread ", stdDevSpread);
   double shortEntry = meanSpread - 2 * stdDevSpread2 ;

   double shortExit = meanSpread;
   double longEntry = meanSpread + 2 * stdDevSpread2 ;

   double longExit = meanSpread;
   if((price2 < longExit && ticket2 != 0 && Order==4) || (price1 > shortExit && ticket1 != 0 && Order==1) || (price2 > shortExit && ticket1 != 0 && Order==2) || (price1 < longExit && ticket2 != 0 && Order==3))
     {
      ExtTrade.PositionClose(ticket1);
      ExtTrade.PositionClose(ticket2);
      ticket1 = 0;
      ticket2 = 0;
      Print("Arbitraje detenido - Cerrando órdenes");
     }

  }

//+------------------------------------------------------------------+
//|                                                                  |
//+------------------------------------------------------------------+
double CalculateStdDev(double &data[], int start, int count)
  {
   double sum = 0;
   double sumSq = 0;
   for(int i = start; i < start + count; i++)
     {
      sum += data[i];
      sumSq += data[i] * data[i];
     }
   double mean = sum / count;
   double variance = (sumSq / count) - (mean * mean);
   return MathSqrt(variance);
  }
//+------------------------------------------------------------------+
//|                                                                  |
//+------------------------------------------------------------------+
bool ArePositionsOpen()
  {
// Check for positions on symbol1
   if(PositionSelect(symbol1) && PositionGetDouble(POSITION_VOLUME) > 0)
      return true;
// Check for positions on symbol2
   if(PositionSelect(symbol2) && PositionGetDouble(POSITION_VOLUME) > 0)
      return true;

   return false;
  }
//+------------------------------------------------------------------+
void PredictPrice(void)
  {
   static vectorf output_data(1);            // vector to get result
   static vectorf x_norm(SAMPLE_SIZE);       // vector for prices normalize

//--- check for normalization possibility
   if(ExtMin>=ExtMax)
     {
      Print("ExtMin>=ExtMax");
      //ExtPredictedClass=-1;
      return;
     }
//--- request last bars
   if(!x_norm.CopyRates(_Symbol,PERIOD_D1,COPY_RATES_CLOSE,1,SAMPLE_SIZE))
     {
      Print("CopyRates ",x_norm.Size());
      //ExtPredictedClass=-1;
      return;
     }
   float last_close=x_norm[SAMPLE_SIZE-1];
//--- normalize prices
   x_norm-=ExtMin;
   x_norm/=(ExtMax-ExtMin);
//--- run the inference
   if(!OnnxRun(ExtHandle,ONNX_NO_CONVERSION,x_norm,output_data))
     {
      Print("OnnxRun");
      //ExtPredictedClass=-1;
      return;
     }
//--- denormalize the price from the output value
   predicted=output_data[0]*(ExtMax-ExtMin)+ExtMin;
//return predicted;
  }
//+------------------------------------------------------------------+
//|                                                                  |
//+------------------------------------------------------------------+
void PredictPrice2(void)
  {
   static vectorf output_data2(1);            // vector to get result
   static vectorf x_norm2(SAMPLE_SIZE);       // vector for prices normalize

//--- check for normalization possibility
   if(ExtMin2>=ExtMax2)
     {
      Print("ExtMin2>=ExtMax2");
      //ExtPredictedClass=-1;
      return;
     }
//--- request last bars
   if(!x_norm2.CopyRates(symbol2,PERIOD_D1,COPY_RATES_CLOSE,1,SAMPLE_SIZE))
     {
      Print("CopyRates ",x_norm2.Size());
      //ExtPredictedClass=-1;
      return;
     }
   float last_close2=x_norm2[SAMPLE_SIZE-1];
//--- normalize prices
   x_norm2-=ExtMin2;
   x_norm2/=(ExtMax2-ExtMin2);
//--- run the inference
   if(!OnnxRun(ExtHandle2,ONNX_NO_CONVERSION,x_norm2,output_data2))
     {
      Print("OnnxRun");
      //ExtPredictedClass=-1;
      return;
     }
//--- denormalize the price from the output value
   predicted2=output_data2[0]*(ExtMax2-ExtMin2)+ExtMin2;
//--- classify predicted price movement
//return predicted2;
  }

//+------------------------------------------------------------------+
//| Get minimal and maximal Close for last 120 days                  |
//+------------------------------------------------------------------+
void GetMinMax(void)
  {
   vectorf close;
   close.CopyRates(_Symbol,PERIOD_D1,COPY_RATES_CLOSE,0,SAMPLE_SIZE);
   ExtMin=close.Min();
   ExtMax=close.Max();
  }

//+------------------------------------------------------------------+
//| Get minimal and maximal Close for last 120 days                  |
//+------------------------------------------------------------------+
void GetMinMax2(void)
  {
   vectorf close2;
   close2.CopyRates(symbol2,PERIOD_D1,COPY_RATES_CLOSE,0,SAMPLE_SIZE);
   ExtMin2=close2.Min();
   ExtMax2=close2.Max();
  }

Esses são os resultados para NZDUSD com AUDUSD para o período de 1 minuto com modelos ONNX de período de 1 dia, com SL de 1500 pontos e TP de 1500 pontos com modelos que fazem previsões de 1º de janeiro de 2023 a 1º de janeiro de 2024 :

nzdusd audusd

nzdusd audusd back-testing





Para selecionar outros pares para filtrar, altere esta linha:

symbols = [s.name for s in symbols if s.name.startswith('EUR') or s.name.startswith('USD') or s.name.endswith('USD')]


Estudo de Caso 2

A arbitragem é muito frequentemente utilizada no trading de ações, por isso acho interessante fazer outro exemplo com pares da NASDAQ.

No meu caso, alterei esta linha:

symbols = [s.name for s in symbols if s.name.startswith('EUR') or s.name.startswith('USD') or s.name.endswith('USD')]

Para esta:

# Crea un DataFrame con la información completa de los símbolos
symbols_df = pd.DataFrame([{'Symbol': symbol.name, 'Path': symbol.path} for symbol in all_symbols])

# Filtra adicionalmente para obtener solo los CFDs de NASDAQ
# Asumiendo que los CFDs tienen un identificador único en el 'Path'
nasdaq_group4_df = symbols_df[symbols_df['Path'].str.contains('NASDAQ')]

# Filtra aún más para obtener solo los símbolos que NO contienen '.'
nasdaq_group4_df3 = nasdaq_group4_df[nasdaq_group4_df['Symbol'].str.contains('#')]

nasdaq_group4_df2 = nasdaq_group4_df3[~nasdaq_group4_df3['Symbol'].str.contains('\.')]

# Ahora, obtenemos la lista de símbolos filtrados
filtered_symbols = nasdaq_group4_df2['Symbol'].tolist()
# Descargar datos históricos y almacenar en un diccionario
symbols = filtered_symbols

Estes foram os pares filtrados:

(Havia tantos pares cointegrados e correlacionados, que tive que alterar o script. Modifiquei o script .py para imprimir isso em um arquivo CSV.)

Alterações:

# Filtrar y guardar solo los pares cointegrados con p-valor menor de 0.05 en un archivo CSV
result_df = pd.DataFrame(cointegrated_pairs, columns=['Symbol1', 'Symbol2', 'Correlation', 'Cointegration P-value'])
result_df.to_csv('cointegrated_pairs.csv', index=False)

# Imprimir el total de pares cointegrados
print(f'Total de pares con fuerte correlación y cointegrados: {len(cointegrated_pairs)}')

Estes são os pares filtrados do NASDAQ (a planilha com os resultados está anexada).

A partir de agora, continuarei com Amazon e Netflix, com modelos que fazem previsões de 1º de janeiro de 2023 a 1º de janeiro de 2024.

#AMZN   #NFLX   0.966605859     0.021683012

Para obter melhores resultados, o tamanho da amostra foi multiplicado por três:

sample_size = 120*25*3

Aqui estão os resultados:

amzn 0


amzn 1

amzn 2

amzn 3

amzn 4

6.856399020501732
47.010207528337105
0.9395402850007741 


nflx 0

nflx 1

nflx 2

nflx 3

nflx 4

25.975755379462548
674.7398675336775
0.9735838717570285 


Com SL de 400 e TP de 800

amzn nflx


amzn nflx backtesting


Então, ajustei finamente os Stop Losses e os Take Profits. Aqui está o que conseguimos com uma rápida otimização:

Resultados da otimização


Todos os scripts e ONNX com os EAs estão anexados a este artigo. Você pode baixá-los e usá-los de forma metódica e científica para obter seus resultados. Será sua responsabilidade criar novos ONNX nas datas que você precisar (lembre-se de alterar as datas nos arquivos de treino .py) e também as datas no Strategy Tester. Exemplo: Modelos ONNX para períodos de 1 dia e 120325 de dados podem ser usados no máximo por um ano (mas, se fosse você, eu criaria novos modelos semanal ou mensalmente).

Lembre-se, esta é apenas uma estratégia com seu exemplo, não é um robô de negociação pronto para uso, e você provavelmente nunca encontrará um desses gratuitamente na internet.


Conclusão

Vimos como usar correlação e cointegração e criamos um indicador de coeficiente de Pearson e um EA para negociação de arbitragem usando previsões. Melhores resultados podem ser obtidos ao usar os pares corretos do filtro .py. Você pode ajustar os SL's e TP's para obter melhores resultados e tornar a estratégia mais complexa para obter melhores retornos. 

Lembre-se de salvar os modelos ONNX na pasta MQL5/Files, o indicador .mq5 na pasta de Indicadores e o EA na pasta de Experts.



Traduzido do Inglês pela MetaQuotes Ltd.
Artigo original: https://www.mql5.com/en/articles/14846

Técnicas do MQL5 Wizard que você deve conhecer (Parte 18): Pesquisa de Arquitetura Neural com Vetores Próprios Técnicas do MQL5 Wizard que você deve conhecer (Parte 18): Pesquisa de Arquitetura Neural com Vetores Próprios
Pesquisa de Arquitetura Neural, uma abordagem automatizada para determinar as configurações ideais de uma rede neural, pode ser um diferencial ao enfrentar muitas opções e grandes conjuntos de dados de teste. Examinamos como, quando emparelhado com Vetores Próprios, esse processo pode se tornar ainda mais eficiente.
Desenvolvendo um sistema de Replay (Parte 67): Refinando o Indicador de controle Desenvolvendo um sistema de Replay (Parte 67): Refinando o Indicador de controle
Neste artigo mostrarei o que um pouco de refinamento no código é capaz de fazer. Tal refinamento tem como objetivo tornar mais simples o nosso código. Fazer um maior uso das chamadas de biblioteca do MQL5. Mas principalmente fazer com que o nosso código se torne bem mais estável, seguro e fácil de ser usado por outras classe, ou outros códigos que por ventura construiremos. O conteúdo exposto aqui, visa e tem como objetivo, pura e simplesmente a didática. De modo algum deve ser encarado como sendo, uma aplicação cuja finalidade não venha a ser o aprendizado e estudo dos conceitos mostrados.
MetaTrader 4 no macOS MetaTrader 4 no macOS
Preparamos um instalador especial para a plataforma de negociação MetaTrader 4 no macOS. Trata-se de um assistente completo que permite instalar o aplicativo como um software nativo. Ele realiza todas as ações necessárias: identifica o sistema, baixa e instala a versão mais recente do Wine, configura-o e, por fim, instala o MetaTrader dentro dele. Todo o processo ocorre de forma automática, e tudo o que você precisa fazer é aguardar a conclusão da instalação. Assim que terminar, você poderá começar a trabalhar com a plataforma imediatamente.
Um algoritmo de seleção de características usando aprendizado baseado em energia em MQL5 puro Um algoritmo de seleção de características usando aprendizado baseado em energia em MQL5 puro
Neste artigo, apresentamos a implementação de um algoritmo de seleção de características descrito em um artigo acadêmico intitulado "FREL: Um algoritmo estável de seleção de características", chamado de Ponderação de Características como Aprendizado Baseado em Energia Regularizada.