パブリッシュされた記事"Candlestick Trend Constraintモデルの構築(第8回):エキスパートアドバイザーの開発 (I)".

今回は、前回の記事で作成した指標を元に、MQL5で最初のエキスパートアドバイザー(EA)を作成します。リスク管理を含め、取引プロセスを自動化するために必要な全機能を紹介します。これにより、手動の取引執行から自動化されたシステムへとスムーズに移行できるメリットがあります。
パブリッシュされた記事"MQL5の統合:Python".

Pythonは、特に金融、データサイエンス、人工知能、機械学習の分野で多くの特徴を持つ、よく知られた人気のプログラミング言語です。また、Pythonは取引にも有効な強力なツールです。MQL5では、この強力な言語を統合して使用することで、目的を効果的に達成することができます。本記事では、Pythonの基本的な情報を学んだ後、MQL5でPythonを統合して使用する方法を紹介します。
最もダウンロードされた無料のプロダクト:
マーケットの中のベストセラー:
パブリッシュされた記事"コードロックアルゴリズム(CLA)".

この記事では、コードロックを単なるセキュリティメカニズムとしてではなく、複雑な最適化問題を解くためのツールとして再考し、新たな視点から捉えます。セキュリティ装置にとどまらず、最適化への革新的アプローチのインスピレーション源となるコードロックの世界をご紹介します。各ロックが特定の問題の解を表す「ロック」の母集団を作り、機械学習や取引システム開発など様々な分野でこれらのロックを「ピッキング」し、最適解を見つけるアルゴリズムを構築します。
パブリッシュされた記事"多通貨エキスパートアドバイザーの開発(第11回):最適化の自動化(最初のステップ)".

良いEAを得るためには、取引戦略の複数のインスタンスから優れたパラメータセットを選択する必要があります。これを実現するためには、さまざまな銘柄で最適化を行い、最良の結果を選ぶという手動のプロセスがあります。しかし、この作業をプログラムに任せ、より生産的な活動に専念したほうが効率的です。
パブリッシュされた記事"あらゆるタイプのトレーリングストップを開発してEAに接続する方法".

この記事では、様々なトレーリングストップを簡単に作成するためのクラスと、トレーリングストップを任意のEAに接続する方法について説明します。
最もダウンロードされた無料のプロダクト:
マーケットの中のベストセラー:
パブリッシュされた記事"アルゴリズム取引のリスクマネージャー".

本稿の目的は、リスクマネージャーを利用する必要性を証明し、アルゴリズム取引におけるリスク管理の原則を別クラスで実践することで、金融市場におけるデイ取引と投資におけるリスク標準化アプローチの有効性を誰もが検証できるようにすることです。この記事では、アルゴリズム取引用のリスクマネージャークラスを作成します。これは、手動取引のリスクマネージャーの作成について述べた前回の記事の論理的な続きです。
パブリッシュされた記事"彗尾アルゴリズム(CTA)".

この記事では、ユニークな宇宙物体である彗星と、太陽に接近する際に形成されるその印象的な尾にインスパイアされた「彗尾最適化アルゴリズム(CTA: Comet Tail Algorithm)」について考察します。このアルゴリズムは、彗星とその尾の運動の概念に基づき、最適化問題の最適解を見つけることを目的としています。
パブリッシュされた記事"亀甲進化アルゴリズム(TSEA)".

これは、亀の甲羅の進化にインスパイアされたユニークな最適化アルゴリズムです。TSEAアルゴリズムは、問題に対する最適解を表す構造化された皮膚領域が徐々に形成される様子をエミュレートします。最良の解は「硬く」なり、外側に近い位置に配置され、成功しなかった解は「柔らかい」ままで内側に留まります。このアルゴリズムは、質と距離に基づく解のクラスタリングを利用し、成功率の低い選択肢を保持しながら、柔軟性と適応性を提供します。
最もダウンロードされた無料のプロダクト:
最も人気のあるフォーラムトピック:
- エキスパート: トレーダーのためのMQL5プログラミング - 書籍からのソースコード。第7部 11 新しいコメント
- 記事「どんな市場でも優位性を得る方法(第2回):テクニカル指標の予測」についてのディスカッション 10 新しいコメント
- 記事「アフリカ水牛最適化(ABO)」についてのディスカッション 5 新しいコメント
マーケットの中のベストセラー:
今月最も多くダウンロードされたソースコード
- SuperTrend SuperTrendインディケータ
- Candle Time End and Spread このインディケータは、現在のスプレッドと同時にバー(ローソク足)を閉じるまでの時間を表示します。
- トレーダーのためのMQL5プログラミング - 書籍からのソースコード。第1部 本書の第1章では、MQL5言語と開発環境を紹介しています。MQL4(MetaTrader 4言語)と比較してMQL5言語で導入された新機能の1つは、オブジェクト指向プログラミング(OOP)のサポートです。これはC++に似ています。
今月最も多く読まれた記事

今回は、引き続きDoEasyライブラリの価格パターンを見ていきましょう。また、プライスアクションフォーメーションのはらみ線パターンクラスも作成します。

自分自身のトレーディングストラテジーを使用してトレードしていますか。 システムトレードのルールをアルゴリズムとして正式に記述できる場合は、自動化されたEAにトレードを委託することをお勧めします。 ロボットは、人間の弱点であるところの睡眠や食品を必要としません。 この記事では、フリーランスのサービスでトレードロボットを発注する際の要件定義の作成方法を示します。

この記事では、一般的なLinuxバージョン(UbuntuとDebian)にMetaTrader 5をインストールする簡単な方法を示します。これらのシステムは、サーバーハードウェアだけでなく、トレーダーのパーソナルコンピューターでも広く使用されています。
パブリッシュされた記事"リプレイシステムの開発(第46回):Chart Tradeプロジェクト(V)".

アプリケーションを動作させるために必要なファイルを探すのに時間を浪費していませんか。すべてを実行ファイルに含めてみてはどうでしょうか。そうすれば、ファイルを探す必要がなくなります。多くの人がこのような配布・保管方法を採用していることは知っていますが、少なくとも、実行ファイルの配布や保管に関してはもっと適切な方法があります。ここで紹介する方法は、MQL5だけでなく、MetaTrader 5そのものを優れたアシスタントとして使うことができるので、非常に便利です。しかも、理解するのはそれほど難しくありません。
パブリッシュされた記事"多通貨エキスパートアドバイザーの開発(第10回):文字列からオブジェクトを作成する".

エキスパートアドバイザー(EA)の開発計画は複数の段階で構成されており、中間結果はデータベースに保存されます。しかし、これらの結果はオブジェクトとしてではなく、文字列や数値としてのみ抽出できます。したがって、データベースから読み込んだ文字列を基に、EAで目的のオブジェクトを再構築する方法が必要です。
パブリッシュされた記事"ニューラルネットワークが簡単に(第88回):Time-series Dense Encoder (TiDE)".

研究者たちは、より正確な予測を得るために、しばしばモデルを複雑化します。しかし、その結果として、モデルの訓練やメンテナンスにかかるコストも増加します。この増大したコストは常に正当化されるのでしょうか。本記事では、シンプルで高速な線形モデルの特性を活かし、複雑なアーキテクチャを持つ最新モデルに匹敵する結果を示すアルゴリズムを紹介します。
1 新しいシグナル 今、購読可能です
最もダウンロードされた無料のプロダクト:
マーケットの中のベストセラー:
パブリッシュされた記事"SMAとEMAを使った自動最適化された利益確定と指標パラメータの例".

この記事では、機械学習とテクニカル分析を組み合わせた、FX取引向けの高度なEAを紹介します。アップル株取引を中心に、適応的な最適化やリスク管理、複数の取引戦略を活用しています。バックテストでは、収益性が高い一方で、大きなドローダウンを伴う結果が得られており、さらなる改良の余地が示唆されています。
パブリッシュされた記事"知っておくべきMQL5ウィザードのテクニック(第31回):損失関数の選択".

損失関数は、機械学習アルゴリズムの重要な指標です。これは、与えられたパラメータセットが目標に対してどれだけうまく機能しているかを定量的に評価し、学習プロセスにフィードバックを提供する役割を果たします。本記事では、MQL5のカスタムウィザードクラスを使って、損失関数のさまざまな形式を探っていきます。
最もダウンロードされた無料のプロダクト:
マーケットの中のベストセラー:
今週最も多くダウンロードされたソースコード
- SuperTrend SuperTrendインディケータ
- b-clock 新しいローソク足が出現する前に残された分と秒を表示します。
- 書籍「MQL5を使用したアルゴリズム取引のためのニューラルネットワーク」からの例 本書「MQL5を使用したアルゴリズム取引のためのニューラルネットワーク」は、人工知能とニューラルネットワークの理論的基礎と、MQL5プログラミング言語を使った金融取引への応用の実践的側面の両方を網羅した包括的なガイドブックです。
今週最も多く読まれた記事

MQL5とデータ処理パッケージの統合(第1回):高度なデータ分析と統計処理
統合により、MQL5から生の財務データをJupyter Labのようなデータ処理パッケージにインポートし、統計テストを含む高度な分析をおこなうシームレスなワークフローが実現します。

MQL5で動的な多銘柄多期間の相対力指標(RSI)指標ダッシュボードを作成する
この記事では、MQL5を使用して、動的に複数の銘柄と時間枠にわたるRSI指標のダッシュボードを開発し、トレーダーにリアルタイムでRSI値を提供する方法を解説します。このダッシュボードには、インタラクティブなボタン、リアルタイム更新、色分けされた指標が搭載されており、トレーダーがより的確な意思決定をおこなうためのサポートをします。

この記事では、一般的なLinuxバージョン(UbuntuとDebian)にMetaTrader 5をインストールする簡単な方法を示します。これらのシステムは、サーバーハードウェアだけでなく、トレーダーのパーソナルコンピューターでも広く使用されています。
2 新しいシグナル 今、購読可能です
マーケットの中のベストセラー:
最もダウンロードされた無料のプロダクト:
マーケットの中のベストセラー:
パブリッシュされた記事"MQL5-Telegram統合エキスパートアドバイザーの作成(第2回):MQL5からTelegramへのシグナル送信".

この記事では、移動平均クロスオーバーシグナルをTelegramに送信するMQL5-Telegram統合エキスパートアドバイザー(EA)を作成します。移動平均クロスオーバーから売買シグナルを生成し、MQL5で必要なコードを実装し、統合がシームレスに機能するようにするプロセスを詳しく説明します。その結果、リアルタイムの取引アラートをTelegramのグループチャットに直接提供するシステムが完成します。
パブリッシュされた記事"MQL5-Telegram統合エキスパートアドバイザーの作成(第1回):MQL5からTelegramへのメッセージ送信".

この記事では、MQL5を使用してEAを作成し、Telegramに自動でメッセージを送信する方法を説明します。ボットのAPIトークンやチャットIDといった必要なパラメータを設定し、HTTP POSTリクエストを実行してメッセージを配信する流れを学びます。また、応答を処理し、万が一メッセージ送信が失敗した場合には、トラブルシューティングについても解説します。最終的には、MQL5を通じてTelegramにメッセージを送るボットを構築する手順をマスターします。
パブリッシュされた記事"データサイエンスと機械学習(第29回):AI訓練に最適なFXデータを選ぶための重要なヒント".

この記事では、AIモデルのパフォーマンスを向上させるために、最も適切で高品質なFXデータを選択するための重要な側面について深く掘り下げます。
最もダウンロードされた無料のプロダクト:
マーケットの中のベストセラー:
1 新しいシグナル 今、購読可能です
パブリッシュされた記事"知っておくべきMQL5ウィザードのテクニック(第30回):機械学習におけるバッチ正規化のスポットライト".

バッチ正規化とは、ニューラルネットワークのような機械学習アルゴリズムに投入するデータの前処理です。これは、アルゴリズムが使用する活性化の種類を常に意識しながらおこなわれます。そこで、エキスパートアドバイザー(EA)を使って、そのメリットを享受するためのさまざまなアプローチを探ります。























