パブリッシュされた記事"市場力学をマスターする:支持&抵抗戦略エキスパートアドバイザー(EA)の作成".

支持&抵抗戦略に基づく自動売買アルゴリズム開発のための包括的ガイドです。MQL5でEAを作成し、MetaTrader 5でテストするための、価格帯行動の分析からリスク管理までのあらゆる側面に関する詳細情報が含まれます。
パブリッシュされた記事"知っておくべきMQL5ウィザードのテクニック(第23回):CNN".

畳み込みニューラルネットワーク(Convolutional Neural Network: CNN)もまた、多次元のデータセットを主要な構成要素に分解することに特化した機械学習アルゴリズムです。一般的にどのように達成されるかを見て、別のMQL5ウィザードシグナルクラスのトレーダーへの応用の可能性を探ります。
最もダウンロードされた無料のプロダクト:
マーケットの中のベストセラー:
2 新しいシグナル 今、購読可能です
最も人気のあるフォーラムトピック:
- MQLで書かれたUIのギャラリー 15 新しいコメント
- 記事「ウィリアム・ギャンの手法(第1回):ギャンアングルインジケーターの作成」についてのディスカッション 14 新しいコメント
- 記事「あらゆるタイプのトレーリングストップを開発してEAに接続する方法」についてのディスカッション 2 新しいコメント
最もダウンロードされた無料のプロダクト:
マーケットの中のベストセラー:
2 新しいシグナル 今、購読可能です
パブリッシュされた記事"MQL5でゾーン回復マーチンゲール戦略を開発する".

この記事では、ゾーン回復取引アルゴリズムに基づくエキスパートアドバイザー(EA)の作成に向けて実施すべきステップについて、詳細な観点から論じています。これは、アルゴリズムトレーダーの時間を節約するシステムの自動化に役立ちます。
パブリッシュされた記事"LSTMニューラルネットワークを用いた時系列予測の作成:価格の正規化と時間のトークン化".

この記事では、日次レンジを使用して市場データを正規化し、市場予測を強化するためにニューラルネットワークを訓練する簡単な戦略を概説します。開発されたモデルは、既存のテクニカル分析の枠組みと組み合わせて、あるいは単独で、市場全体の方向性を予測するのに役立てることができます。この記事で概説した枠組みは、テクニカルアナリストであれば、手動と自動売買の両方の戦略に適したモデルを開発するために、さらに改良を加えることができます。
パブリッシュされた記事"データサイエンスと機械学習(第24回):通常のAIモデルによるFX時系列予測".

外国為替市場において、過去を知らずに将来のトレンドを予測することは非常に困難です。過去の値を考慮して将来の予測をおこなうことができる機械学習モデルは非常に少ないです。この記事では、市場に勝つために古典的な(非時系列)人工知能モデルを使用する方法について説明します。
最もダウンロードされた無料のプロダクト:
マーケットの中のベストセラー:
今月最も多くダウンロードされたソースコード
- Candle Time End and Spread このインディケータは、現在のスプレッドと同時にバー(ローソク足)を閉じるまでの時間を表示します。
- SuperTrend SuperTrendインディケータ
- 取引セッションインディケータ このインディケータはDRAW_FILLINGバッファに基づいています。入力パラメータはなく、TimeTradeServer()およびTimeGMT() 関数が使われます。
今月最も多く読まれた記事

どんな市場でも優位性を得る方法(第2回):テクニカル指標の予測
取引されている銘柄の価格を予測するよりも、特定のテクニカル指標を予測する方が精度が高いことをご存知ですか。この洞察力をより良い取引戦略のために活用する方法を探るために、ぜひお読みください。

この記事では、教師あり機械学習アルゴリズムを活用することで、古典的な原油取引戦略を強化することを目的として、原油取引戦略を再検討します。ブレント原油価格とWTI原油価格のスプレッドに基づいて、将来のブレント原油価格を予測する最小二乗モデルを構築します。目標は、将来のブレント価格変動の先行指標を特定することです。

この記事では、一般的なLinuxバージョン(UbuntuとDebian)にMetaTrader 5をインストールする簡単な方法を示します。これらのシステムは、サーバーハードウェアだけでなく、トレーダーのパーソナルコンピューターでも広く使用されています。
パブリッシュされた記事"Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート2)".

今日は、PythonとTelegram Bot APIと連携して、MQL5のパワーを活用した MetaTrader 5指標通知のための実用的なTelegram統合について説明します。ポイントが見逃がされることがないように、すべてを詳細に説明します。このプロジェクトが終了する頃には、ご自分のプロジェクトに応用できる貴重な洞察を得ることができるでしょう。
パブリッシュされた記事"Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート1)".

本連載で作成するTrend Constraint指標からのシグナル通知を受信するためのTelegramとWhatsAppの統合を説明するために、メインのMQL5コードを特定のコードスニペットに分解します。これにより、トレーダーや開発者(初心者か経験豊富かを問わず)が簡単にコンセプトを把握できるようになります。まず、MetaTrader 5の通知に関する設定と、ユーザーにとってのその意義について説明します。これは、開発者が自分のシステムにさらに応用するためのメモを事前に取るのに役立ちます。
パブリッシュされた記事"独自のLLMをEAに統合する(第4部):GPUを使った独自のLLMの訓練".

今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。
最もダウンロードされた無料のプロダクト:
マーケットの中のベストセラー:
パブリッシュされた記事"ニューラルネットワークが簡単に(第79回):状態の文脈におけるFeature Aggregated Queries (FAQ)".

前回の記事では、画像内のオブジェクトを検出する方法の1つを紹介しました。ただし、静的な画像の処理は、私たちが分析する価格のダイナミクスのような動的な時系列の処理とは多少異なります。この記事では、私たちが解決しようとしている問題にやや近い、ビデオ中の物体を検出する方法について考えます。
パブリッシュされた記事"因果推論における傾向スコア".

本稿では、因果推論におけるマッチングについて考察します。マッチングは、データセット内の類似した観測を比較するために使用されます。これは因果関係を正しく判定し、バイアスを取り除くために必要なことです。著者は、訓練されていない新しいデータではより安定する、機械学習に基づく取引システムを構築する際に、これがどのように役立つかを説明しています。傾向スコアは因果推論において中心的な役割を果たし、広く用いられています。
パブリッシュされた記事"DoEasy - サービス関数(第1回):価格パターン".

この記事では、時系列データを使用して価格パターンを検索するメソッドの開発に着手します。パターンには、どのようなタイプのパターンにも共通する、一定のパラメータセットがあります。この種のデータはすべて、基となる抽象パターンのオブジェクトクラスに集約されます。今回は、抽象パターンクラスとピンバーパターンクラスを作成します。
パブリッシュされた記事"母集団最適化アルゴリズム:極値から抜け出す力(第I部)".

本稿では、母集団最適化アルゴリズムの挙動を、集団の多様性が低い場合に効率的に極小値を脱出し、最大値に到達する能力という観点から検証することを目的としたユニークな実験を紹介します。この方向性で取り組むことで、ユーザーが設定した座標を出発点として、どの特定のアルゴリズムが検索を成功させることができるのか、またその成功にどのような要因が影響するのかについて、さらなる洞察が得られるでしょう。
パブリッシュされた記事"ニューラルネットワークが簡単に(第78回):Transformerを用いたデコーダなしの物体検出器(DFFT)".

この記事では、取引戦略の構築という問題を別の角度から見てみようと思います。将来の値動きを予測するのではなく、過去のデータの分析に基づいた取引システムの構築を試みます。
パブリッシュされた記事"効率的な最適化のバックボーンとしての母集団アルゴリズムの基本クラス".

この記事は、最適化手法の適用を単純化するために、様々な母集団アルゴリズムを1つのクラスにまとめるというユニークな研究の試みです。このアプローチは、ハイブリッド型を含む新しいアルゴリズム開発の機会を開くだけでなく、普遍的な基本テストスタンドの構築にもつながります。このスタンドは、特定のタスクに応じて最適なアルゴリズムを選択するための重要なツールとなります。
パブリッシュされた記事"MetaTraderのMultibot(第2回):動的テンプレートの改良".

前回の記事のテーマを発展させ、より柔軟で機能的なテンプレートを作成することにしました。このテンプレートは、より大きな機能を持ち、フリーランスとして、また外部ソリューションとの統合機能を備えた多通貨多期間EAを開発するためのベースとして効果的に使用することができます。
パブリッシュされた記事"多通貨エキスパートアドバイザーの開発(第4回):仮想注文の保留と状況の保存".

多通貨EAの開発を始めてから、すでに一定の成果を上げ、コードの改良を何度か繰り返すことができました。ただし、EAは保留中注文を扱うことができず、端末の再起動後に動作を再開することができませんでした。これらの機能を追加しましょう。
パブリッシュされた記事"母集団最適化アルゴリズム:極値から抜け出す力(第II部)".

母集団の多様性が低いときに効率的に極小値を脱出して最大値に到達する能力という観点から、母集団最適化アルゴリズムの挙動を調べることを目的とした実験を続けます。研究結果が提供されます。
パブリッシュされた記事"DoEasy - コントロール(第33部):垂直スクロールバー".
この記事では、DoEasyライブラリのグラフィカル要素の開発を続け、フォームオブジェクトコントロールの垂直スクロールを追加し、さらに将来必要となる便利な関数やメソッドを紹介します。
パブリッシュされた記事"ニューラルネットワークが簡単に(第77回):Cross-Covariance Transformer (XCiT)".

モデルでは、しばしば様々なAttentionアルゴリズムを使用します。そして、おそらく最もよく使用するのがTransformerです。Transformerの主な欠点はリソースを必要とすることです。この記事では、品質を損なうことなく計算コストを削減する新しいアルゴリズムについて考察します。
最もダウンロードされた無料のプロダクト:
マーケットの中のベストセラー:
今週最も多くダウンロードされたソースコード
- 取引セッションインディケータ このインディケータはDRAW_FILLINGバッファに基づいています。入力パラメータはなく、TimeTradeServer()およびTimeGMT() 関数が使われます。
- SuperTrend SuperTrendインディケータ
- Candle Time End and Spread このインディケータは、現在のスプレッドと同時にバー(ローソク足)を閉じるまでの時間を表示します。
今週最も多く読まれた記事

どんな市場でも優位性を得る方法(第2回):テクニカル指標の予測
取引されている銘柄の価格を予測するよりも、特定のテクニカル指標を予測する方が精度が高いことをご存知ですか。この洞察力をより良い取引戦略のために活用する方法を探るために、ぜひお読みください。

この記事では、一般的なLinuxバージョン(UbuntuとDebian)にMetaTrader 5をインストールする簡単な方法を示します。これらのシステムは、サーバーハードウェアだけでなく、トレーダーのパーソナルコンピューターでも広く使用されています。



























