
ニューラルネットワークが簡単に(第7回): 適応的最適化法
以前の記事では、ネットワーク内のすべてのニューロンに対して同じ学習率を用いてニューラルネットワークをトレーニングするためにストキャスティクススロープ降下法を使用しました。 本論文では、各ニューロンの学習速度を変化させることができる適応学習法に着目します。 その是非についても検討していきたいと思います。

アルゴリズム取引から100万ドルを稼ぐ方法?MQL5.comサービスを使用してください
トレーダーは皆、最初の百万ドルを稼ぐことを目標に市場を訪れます。過度のリスクと初期予算なしでこれを行う方法は何でしょうか。MQL5サービスは、世界中の開発者やトレーダーにそのような機会を提供します。


取引システムの開発と分析への最適なアプローチ
本稿では、資金を投資するためのシステムまたはシグナルを選択する際に使用する基準を示すとともに、取引システムの開発への最適なアプローチを説明し、外国為替取引におけるこの問題の重要性を強調します。

ニューラルネットワークが簡単に(第6回): ニューラルネットワークの学習率を実験する
これまで、様々な種類のニューラルネットワークをその実装とともに考察してきました。 すべての場合において、ニューラルネットワークは、学習率を選択する必要があるグラディエントディーセント法を用いてトレーニングされました。 今回は、正しく選択されたレートの重要性とニューラルネットワーク学習への影響を例を用いて示したいと思います。

ニューラルネットワークが簡単に(第5回): OPENCLでのマルチスレッド計算
ニューラルネットワークの実装のいくつかのタイプについては、これまで説明してきました。 これまで考慮されたネットワークでは、各ニューロンに対して同じ操作が繰り返されます。 さらに論理的な進展としては、ニューラルネットワークの学習プロセスを高速化するために、現代の技術が提供するマルチスレッドコンピューティング機能を利用することです。 可能な実装の1つは、この記事で説明しています。


TDシーケンシャルと一連のMurray-Gannレベルを使用したチャートの分析
TDシーケンシャル(トーマス・デマークのシーケンシャル)は、価格変動のバランスの変化を示すのが得意です。これは、そのシグナルをレベル指標(Murreyレベルなど)と組み合わせると特に明白になります。本稿は、主に初心者や「聖杯」を見つけることができない人を対象としています。また、他のフォーラムでは見たことのないレベル構築の機能をいくつか提示するので、おそらく上級トレーダーにも役立つでしょう... 提案や合理的な批判は大歓迎です...


グリッドとマルチンゲール - それらは何でありどのように使用するか
本稿では、グリッドとマルチンゲールとは何か、そしてそれらに共通するものについて詳しく説明しようと思います。また、これらの戦略が実際にどれほど実行可能であるかの分析を試みます。本稿には、数学セクションと実用セクションがあります。

DoEasyライブラリの時系列(第57部): 指標バッファデータオブジェクト
本稿では、1つの指標に対して1つのバッファのすべてのデータを含むオブジェクトを開発します。このようなオブジェクトは、指標バッファのシリアルデータを格納するために必要になります。その助けを借りて、任意の指標のバッファデータ、および他の同様のデータを相互に並べ替えて比較できるようになります。

DoEasyライブラリの時系列(第56部):カスタム指標オブジェクト、コレクション内指標オブジェクトからのデータ取得
本稿では、EAで使用するためのカスタム指標オブジェクトの作成について検討します。ライブラリクラスを少し改善し、EAの指標オブジェクトからデータを取得するメソッドを追加しましょう。

DoEasyライブラリの時系列(第55部): 指標コレクションクラス
本稿では、指標オブジェクトクラスとそのコレクションの開発を続けます。指標オブジェクトごとに、その説明と正しいコレクションクラスを作成して、エラーなしのストレージを作成し、コレクションリストから指標オブジェクトを取得します。

DoEasyライブラリの時系列(第54部): 抽象基本指標の子孫クラス
本稿では、基本抽象指標の子孫オブジェクトのクラスの作成について検討しています。このようなオブジェクトは、指標EAを作成し、さまざまな指標と価格のデータ値統計を収集および取得する機能へのアクセスを備えています。また、プログラムで作成された各指標のプロパティとデータにアクセスできる指標オブジェクトコレクションを作成します。

ニューラルネットワークが簡単に(第4回): リカレントネットワーク
これまでニューラルネットワークの勉強を続けてきました。 この記事では、ニューラルネットワークのもう一つのタイプであるリカレントネットワークについて考えてみます。 このタイプは、MetaTrader 5の取引プラットフォームで価格チャートで表現される時系列を使用するために提案されています。

ニューラルネットワークが簡単に(第3回): コンボリューションネットワーク
ニューラルネットワークの話題の続きとして、畳み込み型ニューラルネットワークの考察を提案します。 この種のニューラルネットワークは、通常、視覚的なイメージの分析に適用されます。 本稿では、これらのネットワークの金融市場への応用について考察します。

継続的なウォークフォワード最適化(その8)。プログラムの改善と修正
本連載では、ユーザーや読者の皆様からのご意見・ご要望をもとに、プログラムを修正しています。 この記事では、オートオプティマイザーの新バージョンを掲載しています。 このバージョンでは、要求された機能を実装し、他の改善点を提供しています。


外国為替取引の背後にある基本的な数学
この記事は、外国為替取引の主な機能をできるだけ簡単かつ迅速に説明し、初心者といくつかの基本的なアイデアを共有することを目的としています。また、簡単なインディケータ―の開発を紹介するとともに、取引コミュニティで最も興味をそそる質問への回答を試みます。

PythonやRの知識が不要なYandexのCatBoost機械学習アルゴリズム
この記事では、具体的な例を用いて、機械学習プロセスのコードと主要な段階の説明をします。 このモデルを取得するためには、PythonやRの知識は必要ありません。 さらに、MQL5の基本的な知識があれば十分です - まさに私のレベルです。 したがって、この記事が、機械学習の評価やプログラムへの実装に興味のある人たちの手助けとなり、幅広い人たちの良いチュートリアルとなることを期待しています。

DoEasyライブラリの時系列(第52部): 複数銘柄・複数期間の単一バッファ標準指標のクロスプラットフォーム化
本稿では、複数銘柄・複数期間のAccumulation/Distribution標準指標の作成を検討します。指標に関してライブラリクラスをわずかに改善し、このライブラリに基づいて古いMetaTrader 4プラットフォーム用に開発されたプログラムが、MetaTrader5に切り替えたときに正常に機能するようにします。

並列粒子群最適化
本稿では、粒子群アルゴリズムを使用した高速最適化の手法について説明しています。また、この手法のMQLでの実装を提示します。これは、エキスパートアドバイザー内のシングルスレッドモードとローカルテスターエージェントで実行されるアドオンとしての並列マルチスレッドモードの両方ですぐに使用できます。


トレーディングアルゴリズム開発への科学的アプローチ
この記事では、一貫した科学的アプローチを用いて価格パターンを分析し、それに基づいてトレードアルゴリズムを構築するという、トレードアルゴリズムを開発するための方法論を考察します。 開発の理想を事例を用いて示します。

DoEasyライブラリの時系列(第51部): 複数銘柄・複数期間の複合標準指標
本稿では、 複数銘柄・複数期間標準指標のオブジェクトの開発を完結します。一目均衡表標準指標の例を使用して、チャートにデータを表示するための補助描画バッファを持つ複合カスタム指標の作成を分析します。

DoEasyライブラリの時系列(第50部): シフト付き複数銘柄・複数期間標準指標
本稿では、複数銘柄・複数期間標準指標を正しく表示するためのライブラリメソッドを改善して、設定されたシフトによってシフトされたラインが現在の銘柄チャートに表示されるようにします。また、標準指標を使用するメソッドを整理し、最終的な指標プログラムのライブラリにある冗長なコードを削除します。

DoEasyライブラリの時系列(第49部): 複数銘柄・複数期間の複数バッファ標準指標
本稿では、ライブラリクラスを改善して、データを表示するために複数の指標バッファを必要とする複数銘柄・複数期間標準指標を開発する機能を実装します。

高度なリサンプリングと総当たり攻撃によるCatBoostモデルの選択
本稿では、モデルの一般化可能性を向上させることを目的としたデータ変換への可能なアプローチの1つについて説明し、CatBoostモデルの抽出と選択についても説明します。

取引システムの開発における勾配ブースティング(CatBoost)素朴なアプローチ
PythonでCatBoost分類器を訓練してモデルをmql5にエクスポートし、モデルパラメータとカスタムストラテジーテスターを解析します。Python言語とMetaTrader5ライブラリは、データの準備とモデルの訓練に使用されます。


DoEasyライブラリの時系列(第48部): 単一サブウィンドウでの単一バッファ複数銘柄・複数期間指標
本稿では、単一の指標バッファを使用して、指標サブウィンドウを構築および操作するための複数銘柄・複数期間標準指標の作成例について説明します。プログラムのメインウィンドウで動作し、データを表示するための複数のバッファを持つ標準指標を操作するためのライブラリクラスを準備します。

カスタムシンボル。実用的な基礎
この記事では、クオートを表示するための一般的な方法を示すために、カスタムシンボルプログラムの生成を行います。 派生したカスタムシンボルチャートから実際のシンボルをトレードするためのEAにおける提案された亜種についても説明します。 この記事にはMQLのソースコードが添付されています。

ニューラルネットワークが簡単に(第2回): ネットワークのトレーニングとテスト
第2回目の今回は、引き続きニューラルネットワークの勉強をし、作成したCNetクラスをEAで使用した例を考えていきます。 学習時間、予測精度ともに同様の結果を示す2つのニューラルネットワークモデルを用いてタスクを行います。


トレンドとは何か、相場の構造はトレンドかレンジかで決まるのか?
トレーダーはよくトレンドやレンジについて話しますが、トレンドやレンジとは何かを理解している人はほとんどおらず、概念を明確に説明できる人はさらにいません。 基本的な用語について考察することは、多くの場合、偏見や誤解の固まりに悩まされます。 しかし、利益を上げたいのであれば、概念の数学的・論理的な意味を理解する必要があります。 今回は、トレンドとレンジの本質に迫るとともに、相場の構造がトレンドなのか、レンジなのか、何か別のものなのかを定義してみたいと思います。 また、トレンド相場やレンジ相場で利益を出すための最適な戦略についても考えていきたいと思います。


価格系列の離散化、ランダム成分とノイズ
普段我々はローソク足や、価格シリーズを一定の間隔でスライスした足を使って相場を分析しています。 このような離散化手法は、相場の動きの本当の構造を歪めてしまうのではないでしょうか? オーディオ信号は時間の経過とともに変化する関数であるため、オーディオ信号を一定の間隔で離散化することは、許容される解決策です。 信号自体は時間に依存する振幅です。 この信号特性は基本的なものです。


外部アプリケーションで暗号を使用する
この記事では、MetaTraderや外部アプリケーションでのオブジェクトの暗号化/復号化について考えてみます。 今回の目的は、同じ初期データで同じ結果が得られる条件を決めることです。


DoEasyライブラリの時系列(第47部): 複数銘柄・複数期間標準指標
この記事では、標準指標を操作する方法の開発を開始します。これにより、最終的には、ライブラリクラスに基づいて複数銘柄の複数期間の標準指標を作成できるようになります。さらに、「スキップされたバー」イベントを時系列クラスに追加し、ライブラリ準備関数をCEngineクラスに移動することで、メインプログラムコードからの過度の負荷を排除します。


取引イベントおよびシグナルの音声通知システム
今日では、ナビゲーター、音声検索、翻訳ツールがよく使用され、音声アシスタントは人間の生活において重要な役割を果たしています。本稿では、さまざまな取引イベント、市場の状態、取引シグナルによって生成されるシグナルに対するシンプルでユーザフレンドリーな音声通知システムの開発を試みます。


買われすぎ・売られすぎゾーンの検出方法について。 第一部
買われすぎ/売られすぎのゾーンは、相場の特定の状態を特徴づけ、有価証券の価格の弱い変化によって区別されます。 シナミクスにおけるこの不利な変化は、あらゆるスケールのトレンドの成長の最終段階で顕著です。 トレードにおける利益価値は、可能な限り大きなトレンド振幅をカバーできるかどうかに直接依存するため、このようなゾーンを検出する精度は、どのような証券でも重要な課題となります。


確率論と数理統計学と例(第1部): 基礎理論と初等理論
取引とは、常に不確実性に直面して意思決定を行うことです。つまり、これらの決定が行われた時点では、決定の結果が明確ではありません。これには、そのようなケースを意味ある方法で説明できるようにする数学的モデルの構築への理論的アプローチの重要性が必然的に伴います。


クイック手動取引ツールキット: ポジションと指値注文の使用
本稿では、ツールキットの機能を拡張します。特定の条件で取引ポジションを決済する機能を追加し、これらの注文を編集する機能を備えた、成行注文と指値注文を制御するための表を作成します。


DoEasyライブラリの時系列(第48部): 複数銘柄・複数期間指標バッファ
本稿では、指標バッファオブジェクトのクラスを改善して、複数銘柄モードで動作するようにします。これにより、カスタムプログラムで複数銘柄・複数期間指標を作成するための道が開かれます。複数銘柄・複数期間指標標準指標を作成するために、不足している機能を計算バッファオブジェクトに追加します。


数式の計算(第2部)Prattパーサーおよび操車場パーサー
この記事では、演算子の優先順位に基づいたパーサーを使用した数式の解析と評価の原則について検討します。Prattパーサーと操車場パーサー、バイトコードの生成とこのコードによる計算を実装し、式の関数として指標を使用する方法と、これらの指標に基づいてエキスパートアドバイザーで取引シグナルを設定する方法を確認します。


DoEasyライブラリの時系列(第45部): 複数期間指標バッファ
本稿では、複数期間モードと複数銘柄モードで使用する指標バッファオブジェクトおよびコレクションクラスの改善を始めます。現在の銘柄チャートの任意の時間枠からデータを受信して表示するためのバッファオブジェクトの使用を検討するつもりです。