MQL5入門(第20回):ハーモニックパターンの基礎
本記事では、ハーモニックパターンの基本、構造、そして取引での応用方法について解説します。フィボナッチリトレースメントやフィボナッチエクステンションについて学び、MQL5におけるハーモニックパターン検出の実装方法を理解することで、より高度な取引ツールやエキスパートアドバイザー(EA)を構築するための基礎を築くことができます。
共和分株式による統計的裁定取引(第3回):データベースのセットアップ
本記事では、新しく作成したデータベースを更新するためのMQL5 Serviceのサンプル実装を紹介します。このデータベースはデータ分析や、共和分関係にある株式バスケットの取引に利用されます。データベース設計の根拠についても詳しく説明し、参照用としてデータディクショナリを文書化します。さらに、データベースの作成、スキーマ初期化、市場データ挿入のためのMQL5とPythonのスクリプトも提供します。
MetaTrader 5機械学習の設計図(第2回):機械学習のための金融データのラベリング
本連載「機械学習の設計図」の第2回では、単純なラベル付けがなぜモデルを誤った方向に導いてしまうのか、そしてトリプルバリア法やトレンドスキャン法といった高度な手法をどのように適用すれば、リスクを考慮した堅牢なターゲットを定義できるのかをご紹介します。計算負荷の高いこれらの手法を最適化する実践的なPythonコード例も多数取り上げ、市場のノイズに満ちたデータを、現実の取引環境に即した信頼性の高いラベルへと変換する方法を詳しく解説します。
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(IX) - ニュース取引のための単一チャートでのマルチペア管理
ニュース取引では、ボラティリティが高まるため、非常に短時間で複数のポジションや通貨ペアを管理する必要があります。本記事では、News Headline EAにこの機能を統合することで、マルチペア取引の課題にどのように対応できるかを解説します。MQL5を用いたアルゴリズム取引により、マルチペア取引を効率的かつ強力に実現する方法を一緒に探っていきます。
知っておくべきMQL5ウィザードのテクニック(第79回):教師あり学習でのゲーターオシレーターとA/Dオシレーターの使用
前回の記事では、ゲーターオシレーターとA/Dオシレーターの組み合わせについて、通常の設定における生のシグナルを用いた場合の挙動を確認しました。この2つのインジケーターは、それぞれトレンド指標と出来高指標として相補的に機能します。今回の記事では、その続編として、教師あり学習を活用することで、前回レビューした特徴量パターンの一部をどのように強化できるかを検証します。この教師あり学習アプローチでは、CNN(畳み込みニューラルネットワーク)を用い、カーネル回帰およびドット積類似度を活用して、カーネルやチャネルのサイズを決定しています。今回もこれまでと同様に、MQL5ウィザードでエキスパートアドバイザー(EA)を組み立てられるようにしたカスタムシグナルクラスファイル内で実装しています。
古典的な戦略を再構築する(第15回):デイリーブレイクアウト取引戦略
コンピュータが登場する以前から、人間のトレーダーは長年にわたり金融市場に参加し、意思決定を導く経験則を培ってきました。本記事では、よく知られたブレイクアウト戦略を再検証し、こうした経験から得られた市場ロジックがシステマティックな手法に対抗し得るのかをテストします。結果として、元の戦略は高い精度を示した一方で、不安定性とリスク管理の弱さが明らかになりました。そこで本記事ではアプローチを改良し、裁量的な洞察をより堅牢なアルゴリズム取引戦略へと適応する方法を示します。
プライスアクション分析ツールキットの開発(第37回):Sentiment Tilt Meter
市場センチメントは、価格変動に影響を与える要因の中でも最も見落とされがちでありながら強力な要因のひとつです。多くのトレーダーが遅行指標や経験則に頼る中、Sentiment Tilt Meter (STM) EAは生の市場データを明確で視覚的なガイダンスへと変換し、市場が強気、弱気、中立のどちらへ傾いているのかをリアルタイムで示します。これにより、エントリーの根拠を確認し、ダマシを回避し、市場参加のタイミングをより適切に図りやすくなります。
MQLを使用したFirebaseでのCRUD操作
この記事では、FirebaseのCRUD(作成、読み取り、更新、削除)操作を習得するためのステップバイステップガイドを提供します。Realtime DatabaseおよびFirestoreを中心に、Firebase SDKのメソッドを活用して、Webやモバイルアプリで効率的にデータを管理する方法を解説します。新しいレコードの追加から、データの検索、修正、削除まで、実践的なコード例とベストプラクティスを紹介し、リアルタイムでのデータ構造と操作方法を理解することで、開発者がFirebaseの柔軟なNoSQLアーキテクチャを活かして、動的でスケーラブルなアプリケーションを構築できるようになります。
MQL5で自己最適化エキスパートアドバイザーを構築する(第12回):行列分解を用いた線形分類器の構築
本記事では、アルゴリズム取引における行列分解の強力な役割、特にMQL5アプリケーション内での活用について探ります。回帰モデルからマルチターゲット分類器まで、実際の例を通して、これらの手法が組み込みのMQL5関数を使ってどれほど容易に統合できるかを示します。価格の方向性を予測する場合でも、インジケーターの挙動をモデル化する場合でも、このガイドは行列手法を用いたインテリジェントな取引システム構築の強固な基盤を提供します。
Parafracオシレーター:パラボリックとフラクタルインジケーターの組み合わせ
パラボリックSARとフラクタルインジケーターを組み合わせて、新しいオシレーターベースのインジケーターを作成する方法について説明します。両ツールの独自の強みを統合することにより、トレーダーはより洗練された効果的な取引戦略の開発を目指すことができます。
MQL5での取引戦略の自動化(第27回):視覚的なフィードバックによるプライスアクションクラブハーモニックパターンの作成
本記事では、MQL5で弱気、強気両方のクラブ(Crab)ハーモニックパターンを、ピボットポイントとフィボナッチ比率を用いて識別し、正確なエントリー、ストップロス、テイクプロフィットレベルを使用して取引を自動化するクラブパターンシステムを開発します。また、XABCDパターン構造やエントリーレベルを表示するために、三角形やトレンドラインなどのチャートオブジェクトを使った視覚的な表示機能を追加します。
プライスアクション分析ツールキットの開発(第36回):MetaTrader 5マーケットストリームへ直接アクセスするPython活用法
MetaTrader 5ターミナルの潜在能力を最大限に引き出すために、Pythonのデータサイエンスエコシステムと公式のMetaTrader 5クライアントライブラリを活用する方法を紹介します。本記事では、認証をおこない、ライブティックおよび分足データを直接Parquetストレージにストリーミングする手法を解説し、taやProphetを用いた高度な特徴量エンジニアリングをおこない、時間依存型の勾配ブースティングモデルを学習させる方法を示します。その後、軽量なFlaskサービスを展開して、リアルタイムで取引シグナルを提供します。ハイブリッドクオンツフレームワークを構築する場合でも、エキスパートアドバイザー(EA)に機械学習を組み込む場合でも、データ駆動型アルゴリズム取引のための堅牢なエンドツーエンドパイプラインを習得できます。
MQL5での取引戦略の自動化(第26回):複数ポジション取引のためのピンバーナンピンシステムの構築
本記事では、ピンバーを検出して取引を開始し、複数ポジションを管理するためのナンピン(難平、Averaging)戦略を用いたピンバーシステムをMQL5で開発します。さらに、トレーリングストップやブレークイーブン調整で強化し、リアルタイムでポジションと利益を監視できるダッシュボードも組み込みます。
MQL5での取引戦略の自動化(第25回):最小二乗法と動的シグナル生成を備えたTrendline Trader
本記事では、最小二乗法を用いてサポートおよびレジスタンスのトレンドラインを検出し、価格がこれらのラインに触れた際に動的な売買シグナルを生成するTrendline Traderプログラムを開発します。また、生成されたシグナルに基づきポジションをオープンする仕組みも構築します。
MQL5とデータ処理パッケージの統合(第5回):適応学習と柔軟性
今回は、過去のXAU/USDデータを用いて柔軟で適応的な取引モデルを構築し、ONNX形式でのエクスポートや実際の取引システムへの統合に備えることに焦点を当てます。
ダイナミックマルチペアEAの形成(第4回):ボラティリティとリスク調整
このフェーズでは、マルチペアEAを微調整し、ATRなどのボラティリティ指標を活用してリアルタイムで取引サイズとリスクを調整します。これにより、一貫性の向上、資金保護、そしてさまざまな市場状況下でのパフォーマンス改善を実現します。
取引システムの構築(第2回):ポジションサイズ管理の科学
期待値がプラスのシステムであっても、ポジションサイズ管理の決定次第で取引が成功するか破綻するかが決まります。ポジションサイズ管理はリスク管理の中心であり、統計的な優位性を現実の利益に変換しつつ、資本を守る役割を担います。
MQL5取引ツール(第8回):ドラッグ&最小化可能な拡張情報ダッシュボード
本記事では、前回のダッシュボードを拡張し、ドラッグ&最小化機能を追加し、ユーザー操作性を向上させながら、複数銘柄のポジションや口座指標のリアルタイム監視を維持する情報ダッシュボードを開発します。
共和分株式による統計的裁定取引(第2回):エキスパートアドバイザー、バックテスト、最適化
この記事では、ナスダックの4銘柄のバスケットを対象としたサンプルのエキスパートアドバイザー(EA)実装を紹介します。銘柄はまずピアソン相関係数に基づいてフィルタリングされました。その後、フィルタリングされた銘柄群について、ジョハンセン検定を用いて共和分関係の有無を検証しました。最後に、共和分関係から得られたスプレッドについて、ADF検定およびKPSS検定を用いて定常性を検証しました。ここでは、このプロセスに関する補足と、小規模な最適化後のバックテスト結果について説明します。
ログレコードをマスターする(第10回):抑制機能を実装してログの再表示を防ぐ
Logifyライブラリにおけるログ抑制システムを作成しました。本記事では、CLogifySuppressionクラスがどのようにコンソールのノイズを低減するかについて詳しく説明します。このクラスは、繰り返しや無関係なメッセージを回避するための設定可能なルールを適用します。また、外部設定フレームワーク、検証機構、包括的なテストについても取り上げ、ボットやインジケーター開発時のログ取得における堅牢性と柔軟性を確保しています。
初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(III) - ニュース取引のためのクイック取引ボタン
アルゴリズム取引システムは自動売買を担いますが、多くのニューストレーダーやスキャルパーは、高インパクトなニュースイベントや急速に変化する市場環境では能動的なコントロールを好み、迅速な注文執行およびポジション管理を必要とします。これにより、リアルタイムニュースフィード、経済指標カレンダーデータ、インジケーターによる分析、AI駆動型分析、そして即応性の高い取引操作を統合した直感的フロントエンドツールの必要性が明らかになります。
MQL5で自己最適化エキスパートアドバイザーを構築する(第11回):初心者向け線形代数入門
本記事では、MQL5の行列・ベクトルAPIで利用できる強力な線形代数ツールの基礎を解説します。このAPIを効果的に利用するためには、これらの手法を賢く活用するための線形代数の原理をしっかり理解しておく必要があります。本稿は、MQL5でアルゴリズム取引をおこなう際にこの強力なライブラリを活用して作業を開始するために必要となる線形代数の最も重要な規則のいくつかを、読者が直感的に理解できるレベルで身につけることを目的としています。
知っておくべきMQL5ウィザードのテクニック(第78回):ゲーター&A/Dオシレーター戦略による市場耐性の強化
本記事では、ゲーターオシレーターとA/Dオシレーターを用いた取引の体系的アプローチの後半部分を紹介します。新たに5つのパターンを導入することで、偽の動きをフィルタリングし、早期の反転を検出し、時間軸をまたいでシグナルを整合させる方法を示します。明確なコーディング例とパフォーマンステストを通じて、この資料は理論と実践をMQL5開発者向けに橋渡ししています。
プライスアクション分析ツールキットの開発(第35回):予測モデルの学習とデプロイ
履歴データは決して「ゴミ」ではありません。それは、堅牢な市場分析の基盤です。本記事では、履歴データの収集から、それを用いた予測モデルの学習、そして学習済みモデルを用いたリアルタイムの価格予測のデプロイまでを、ステップごとに解説します。ぜひ最後までお読みください。
MQL5取引ツール(第7回):複数銘柄ポジションと口座監視のための情報ダッシュボード
本記事では、MQL5で情報ダッシュボードを開発し、複数銘柄のポジションや口座指標(残高、証拠金、余剰証拠金など)を監視できるようにします。リアルタイム更新可能なソート可能グリッド、CSVエクスポート機能、ヘッダーのグロー効果を実装し、使いやすさと視覚的魅力を向上させます。
プライスアクション分析ツールキットの開発(第34回):高度なデータ取得パイプラインを用いた生の市場データからの予測モデル構築
突然のマーケットスパイクを見逃したり、それが発生したときに対応が間に合わなかったことはありませんか。ライブイベントを予測する最良の方法は、過去のパターンから学ぶことです。本記事では、MetaTrader 5で履歴データを取得し、それをPythonに送信して保存するスクリプトの作成方法を紹介します。これにより、スパイク検知システムの基礎を構築できます。以下で各ステップを詳しく見ていきましょう。
MQL5で自己最適化エキスパートアドバイザーを構築する(第10回):行列分解
行列分解は、データの特性を理解するために用いられる数学的手法です。行と列で整理された大規模な市場データに行列分解を適用することで、市場のパターンや特性を明らかにすることができます。行列分解は非常に強力なツールであり、本記事ではMetaTrader 5のターミナル内でMQL5 APIを活用し、市場データをより深く分析する方法を紹介します。
初心者からエキスパートへ:Reporting EA - ワークフローの設定
ブローカーは、多くの場合、あらかじめ定められたスケジュールに基づいて取引口座のレポートを定期的に提供します。これらの企業はAPI技術を通じて顧客の口座活動や取引履歴にアクセスできるため、取引パフォーマンスのレポートを代わりに生成することが可能です。同様に、MetaTrader 5ターミナルも詳細な取引履歴を保存しており、MQL5を利用することで完全にカスタマイズされたレポートの作成や、個別に設定した配信方法の定義が可能です。
知っておくべきMQL5ウィザードのテクニック(第77回):ゲーターオシレーターとA/Dオシレーターの使用
ビル・ウィリアムズが開発したゲーターオシレーター(Gator Oscillator)とA/Dオシレーター(Accumulation/Distribution Oscillator)は、MQL5のエキスパートアドバイザー(EA)内で調和的に活用できるインジケーターペアの一例です。ゲーターオシレーターはトレンドを確認するために使用し、A/Dオシレーターは出来高を通じてそのトレンドを検証する補助指標として機能します。本記事では、これら2つのインジケーターの組み合わせについて、MQL5ウィザードを活用して構築およびテストをおこない、その有効性を検証します。
取引システムの構築(第1回):定量的なアプローチ
多くのトレーダーは短期的なパフォーマンスに基づいて戦略を評価し、利益を生むシステムであっても早い段階で手放してしまうことがよくあります。しかし、長期的な収益性は、最適化された勝率とリスクリワードレシオ(RRR: Reward-to-Risk Ratio)によって形成されるポジティブな期待値、そして規律あるポジションサイジングに依存しています。これらの原則は、バックテストの結果をもとにPythonでモンテカルロシミュレーションをおこなうことで検証することができ、戦略が時間の経過とともに堅牢であるか、もしくは破綻する可能性が高いかを評価するうえで役立ちます。
MQL5で他の言語の実用的なモジュールを実装する(第3回):Pythonのscheduleモジュール、強化版OnTimerイベント
Pythonのscheduleモジュールは、繰り返しタスクをスケジュールする簡単な方法を提供します。MQL5には組み込みの同等機能はありませんが、この記事ではMetaTrader 5でのタイムイベントの設定を容易にするために、類似のライブラリを実装します。
初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(VII) - ニュース取引におけるポストインパクト戦略
高インパクトの経済ニュースが発表された直後の1分間は、ウィップソー(騙しの多い相場)リスクが非常に高い時間帯です。この短い瞬間、価格変動は不規則で、かつ極めてボラティリティが高く、両方向のペンディング注文が立て続けに発動されることも少なくありません。しかし、通常は1分以内には市場が次第に安定し、従来のトレンドへと戻ったり、修正の動きを見せたりしながら、より通常に近いボラティリティ水準に落ち着いていきます。このセクションでは、ニュース取引における代替アプローチを検討し、その有効性を検証し、トレーダーの戦略ツールキットにどのように加えられるかを探っていきます。詳細と洞察は、以下の項目で順を追って解説します。
MQL5サービスからPythonアプリケーションへのMetaTraderティック情報アクセス(ソケット使用)
場合によっては、MQL5言語だけではすべてをプログラムできないことがあります。また、既存の高度なライブラリをMQL5に移植することは可能であっても、非常に時間がかかります。本記事では、MetaTraderのティック情報(Bid、Ask、時刻など)をMetaTraderサービスを経由してPythonアプリケーションに送信し、Windows OSへの依存を回避する方法を紹介します。
プライスアクション分析ツールキットの開発(第33回):Candle Range Theory Tool
MetaTrader 5向けのCandle-Range Theoryスイートで、市場の読みをアップグレードできます。これは完全にMQL5ネイティブなソリューションで、ローソク足をリアルタイムのボラティリティ情報に変換します。軽量なCRangePatternライブラリは、各ローソク足の真の値幅を適応型ATRと比較し、確定直後に分類します。CRTインジケーターは、その分類結果をチャート上に鮮明な色分けされた矩形や矢印として表示し、収束の進行、急騰・急落、全レンジ包み込みを瞬時に可視化します。
MQL5取引ツール(第6回):パルスアニメーションとコントロールを備えたダイナミックホログラフィックダッシュボード
本記事では、MQL5で動的なホログラフィックダッシュボードを作成し、RSIやボラティリティアラート、ソートオプションを使用して銘柄と時間足を監視します。さらに、パルスアニメーション、インタラクティブボタン、ホログラフィック効果を追加して、ツールを視覚的に魅力的で反応の良いものにします。
MQL5入門(第19回):ウォルフ波動の自動検出
本記事では、強気(上昇)および弱気(下降)のウォルフ波動パターンをプログラムで識別し、MQL5を使用して取引する方法を紹介します。ウォルフ波動構造をプログラムで検出し、それに基づいて取引の実行方法を詳しく解説します。これには、主要なスイングポイントの検出、パターンルールの検証、シグナルに基づくエキスパートアドバイザー(EA)の準備が含まれます。
MQL5での取引戦略の自動化(第24回):リスク管理とトレーリングストップを備えたロンドンセッションブレイクアウトシステム
本記事では、ロンドン市場開場前のレンジブレイクアウトを検出し、任意の取引タイプおよびリスク設定に基づいてペンディング注文(指値・逆指値注文)を自動で発注する「ロンドンセッションブレイクアウトシステム」を開発します。トレーリングストップ、リスクリワード比率、最大ドローダウン制限、そしてリアルタイム監視と管理をおこなうためのコントロールパネルなどの機能も組み込みます。
知っておくべきMQL5ウィザードのテクニック(第76回): Awesome Oscillatorのパターンとエンベロープチャネルを教師あり学習で利用する
前回の記事では、オーサムオシレータ(AO: Awesome Oscillator)とエンベロープチャネル(Envelopes Channel)のインディケーターの組み合わせを紹介しましたが、今回はこのペアリングを教師あり学習でどのように強化できるかを見ていきます。Awesome OscillatorとEnvelope Channelは、トレンドの把握とサポート/レジスタンスの補完的な組み合わせです。私たちの教師あり学習アプローチでは、CNN(畳み込みニューラルネットワーク)を使用し、ドット積カーネルとクロスタイムアテンションを活用してカーネルとチャネルのサイズを決定します。通常どおり、この処理はMQL5ウィザードでエキスパートアドバイザー(EA)を組み立てる際に利用できるカスタムシグナルクラスファイル内でおこないます。
データサイエンスとML(第46回):PythonでN-BEATSを使った株式市場予測
N-BEATSは、時系列予測のために設計された革新的なディープラーニングモデルです。このモデルは、ARIMAやPROPHET、VARなどの従来の時系列予測モデルを超えることを目指して公開されました。本記事では、このモデルについて説明し、株式市場の予測にどのように活用できるかを紹介します。
古典的な戦略を再構築する(第14回):複数戦略分析
本記事では、取引戦略のアンサンブル構築と、MT5遺伝的最適化を用いた戦略パラメータの調整について、引き続き検討していきます。本日はPythonでデータを分析し、モデルがどの戦略が優れているかをより正確に予測でき、市場リターンを直接予測するよりも高い精度を達成できることを示しました。しかし、統計モデルを用いてアプリケーションをテストしたところ、パフォーマンスは著しく低下しました。その後、遺伝的最適化が相関性の高い戦略を優先していたことが判明し、私たちは投票の重みを固定し、インジケーター設定の最適化に焦点を当てるよう方法を修正しました。