MQL4とMQL5のプログラム記事

icon

取引戦略をプログラミングするためのMQL5言語を、ほとんどがコミュニティメンバーによって書かれた数多くの公開記事で学びます。記事は統合、テスター、取引戦略等のカテゴリに分けられていて、プログラミングに関連する疑問への解答を素早く見つけることができます。

新着記事をフォローして、フォーラムでディスカッションしてください。

新しい記事を追加
最新 | ベスト
preview
Parafrac V2オシレーター:パラボリックSARとATRの統合

Parafrac V2オシレーター:パラボリックSARとATRの統合

Parafrac V2オシレーターは、パラボリックSARとATR(Average True Range、平均真の範囲)を統合した高度なテクニカル分析ツールです。前バージョンのParafracオシレーターではフラクタルを使用していたため、過去や現在のシグナルを覆い隠すようなスパイクが発生しやすいという課題がありました。Parafrac V2ではATRによるボラティリティ測定を活用することで、トレンドや反転、ダイバージェンスの検出をより滑らかで信頼性の高い方法で行えるようになり、チャートの混雑や分析の過負荷を軽減できます。
preview
ボラティリティベースのブレイクアウトシステムの開発

ボラティリティベースのブレイクアウトシステムの開発

ボラティリティベースのブレイクアウトシステムは、市場のレンジを特定したうえで、ATRなどのボラティリティ指標によるフィルタを通過した場合に、価格がそのレンジを上方または下方へブレイクしたタイミングでエントリーする手法です。このアプローチにより、強い方向性を伴う値動きを捉えやすくなります。
preview
機械学習の限界を克服する(第4回):複数ホライズン予測による既約誤差の回避

機械学習の限界を克服する(第4回):複数ホライズン予測による既約誤差の回避

機械学習は統計学や線形代数の観点から語られることが多いですが、本記事ではモデル予測を幾何学的に理解する視点に注目します。本記事で示したいのは、モデルはターゲットを直接近似しているのではなく、ターゲットを別の座標系に写像することで固有のずれを生み出し、その結果、避けがたい既約誤差が生じる点です。また本記事では、ターゲットとの直接比較ではなく、異なるホライズンにおけるモデルの予測同士を比較する複数ステップ予測の方が実務的かつ有効であることを提案します。この手法を取引モデルに適用すると、基礎モデルを変更することなく、収益性と予測精度が大幅に向上することを確認しました。
preview
ParafracおよびParafrac V2オシレーターを使用した取引戦略の開発:シングルエントリーパフォーマンスインサイト

ParafracおよびParafrac V2オシレーターを使用した取引戦略の開発:シングルエントリーパフォーマンスインサイト

本記事では、ParaFracオシレーターとその後継であるV2モデルを取引ツールとして紹介し、これらを用いて構築した3種類の取引戦略を解説します。各戦略をテストおよび最適化し、それぞれの強みと弱みを明らかにします。比較分析によって両モデルの性能差を明確にしました。
preview
MQL5でのAI搭載取引システムの構築(第2回):ChatGPT統合型アプリケーションのUI開発

MQL5でのAI搭載取引システムの構築(第2回):ChatGPT統合型アプリケーションのUI開発

本記事では、MQL5でChatGPTを統合したプログラムを開発します。このプログラムでは、第1回で作成したJSON解析フレームワークを活用してOpenAIのAPIにプロンプトを送信し、MetaTrader 5のチャート上に応答を表示します。入力フィールド、送信ボタン、応答表示を備えたダッシュボードを実装し、API通信やテキストの折り返し処理をおこなうことで、ユーザーとのインタラクションを実現します。
preview
MQL 標準ライブラリエクスプローラー(第1回):CTrade、CiMA、CiATRによる紹介

MQL 標準ライブラリエクスプローラー(第1回):CTrade、CiMA、CiATRによる紹介

MQL5標準ライブラリは、MetaTrader 5における取引アルゴリズム開発において重要な役割を果たします。本連載では、このライブラリを使いこなし、MetaTrader 5用の効率的な取引ツールをより簡単に作成する方法を身につけることを目指します。これには、カスタムのエキスパートアドバイザー(EA)、インジケーター、その他のユーティリティが含まれます。本日はその第一歩として、CTrade、CiMA、そしてCiATR クラスを用いたトレンドフォロー型のEAを開発します。これは初心者、熟練者を問わず、すべての開発者にとって非常に重要なテーマです。ぜひ本ディスカッションにご参加いただき、理解を深めてください。
preview
Market Sentimentインジケーターの自動化

Market Sentimentインジケーターの自動化

この記事では、市場の状況を強気、弱気、リスクオン、リスクオフ、中立(ニュートラル)に分類するMarket Sentimentカスタムインジケーターを自動化します。エキスパートアドバイザー(EA)は、現在の市場の傾向や方向性の分析プロセスを合理化しながら、一般的なセンチメントに関するリアルタイムの洞察を提供します。
preview
サイクルベースの取引システム(DPO)の構築と最適化の方法

サイクルベースの取引システム(DPO)の構築と最適化の方法

本記事では、MQL5におけるDPO(Detrended Price Oscillator、トレンド除去価格オシレーター)を用いた取引システムの設計および最適化手法について解説します。DPOのコアロジックを明確にし、長期トレンドを排除して短期サイクルを抽出する仕組みを示します。さらに、段階的な例とシンプルな戦略を通じて、インジケーターの実装方法、エントリー/エグジット条件の定義、そしてバックテストの実施方法について学ぶことができます。最後に、パフォーマンスを向上させ、市場環境の変化へ適応させるための実践的な最適化手法を紹介します。
preview
知っておくべきMQL5ウィザードのテクニック(第80回):TD3強化学習で一目均衡表とADX-Wilderのパターンを使用する

知っておくべきMQL5ウィザードのテクニック(第80回):TD3強化学習で一目均衡表とADX-Wilderのパターンを使用する

本記事は第74回の続編です。第74回では、教師あり学習の枠組みにおける一目均衡表とADXの組み合わせを検討しました。本記事では焦点を強化学習に移します。一目均衡表とADXは、サポート/レジスタンスの把握とトレンドの強さの検出という点で、互いに補完し合う組み合わせを形成します。今回は、TD3 (Twin Delayed Deep Deterministic Policy Gradient)アルゴリズムをこのインジケーターセットでどのように活用できるかを詳しく解説します。前回までと同様に、実装はMQL5ウィザードに統合できるカスタムシグナルクラスとしておこないます。MQL5ウィザードを使用すると、エキスパートアドバイザー(EA)の構築をスムーズに進めることが可能です。