MQL4とMQL5のプログラム記事

icon

取引戦略をプログラミングするためのMQL5言語を、ほとんどがコミュニティメンバーによって書かれた数多くの公開記事で学びます。記事は統合、テスター、取引戦略等のカテゴリに分けられていて、プログラミングに関連する疑問への解答を素早く見つけることができます。

新着記事をフォローして、フォーラムでディスカッションしてください。

新しい記事を追加
最新 | ベスト
preview
カスタム口座パフォーマンス行列インジケーターの開発

カスタム口座パフォーマンス行列インジケーターの開発

このインジケーターは、口座エクイティ、損益、ドローダウンをリアルタイムで監視し、パフォーマンスダッシュボードとして可視化することで、規律の維持を促す役割を果たします。トレーダーが取引の一貫性を保ち、過剰取引を避け、自己勘定取引会社評価チャレンジ(プロップファームチャレンジ)のルールを遵守するための支援ツールとして機能します。
preview
機械学習の限界を克服する(第5回):時系列交差検証の簡単な概要

機械学習の限界を克服する(第5回):時系列交差検証の簡単な概要

本連載では、機械学習を活用した取引戦略を実運用に展開する際に、アルゴリズムトレーダーが直面する課題について考察します。私たちのコミュニティには、より深い技術的理解を必要とするがゆえに、見過ごされがちな課題がいくつも存在します。本日の議論は、機械学習における交差検証の盲点を検討するための足がかりとなるものです。交差検証はしばしば定型的な手順として扱われますが、不注意に実施すると、誤解を招く、あるいは最適とは言えない結果を容易に生み出してしまいます。本記事では、その隠れた盲点をより深く考察する準備として、時系列交差検証の基本を簡単に振り返ります。
preview
MQL5での取引戦略の自動化(第31回):プライスアクションに基づくスリードライブハーモニックパターンシステムの作成

MQL5での取引戦略の自動化(第31回):プライスアクションに基づくスリードライブハーモニックパターンシステムの作成

本記事では、MQL5においてピボットポイントとフィボナッチ比率に基づいて強気、弱気双方のスリードライブハーモニックパターンを識別し、ユーザーが選択できるカスタムエントリー、ストップロス、テイクプロフィット設定を用いて取引を実行するスリードライブパターンシステムを開発します。さらに、チャートオブジェクトによる視覚的フィードバックによって、トレーダーの洞察を強化します。
preview
プライスアクション分析ツールキットの開発(第42回):ボタンロジックと統計レベルを用いたインタラクティブチャートの検証

プライスアクション分析ツールキットの開発(第42回):ボタンロジックと統計レベルを用いたインタラクティブチャートの検証

市場においてスピードと精度が重要である以上、分析ツールも市場と同じくらい賢くある必要があります。本記事では、ボタン操作に基づくエキスパートアドバイザー(EA)を紹介します。これは、価格データを瞬時に意味のある統計レベルに変換するインタラクティブなシステムです。ワンクリックで平均値、偏差、パーセンタイルなどを計算して表示し、複雑な分析をチャート上の明確なシグナルに変換します。価格が反発、押し戻し、または突破する可能性の高いゾーンをハイライトすることで、分析をより迅速かつ実用的にします。
preview
プライスアクション分析ツールキットの開発(第40回):Market DNA Passport

プライスアクション分析ツールキットの開発(第40回):Market DNA Passport

本記事では、各通貨ペアが持つ固有のアイデンティティを、その過去のプライスアクションという視点から探ります。生物の設計図を記述するDNAの概念に着想を得て、本記事では市場にも同様の枠組みを適用し、プライスアクションを各通貨ペアのDNAとして扱います。ボラティリティ、スイング、リトレースメント、スパイク、セッション特性といった構造的挙動を分解することで、各ペアを他と区別する基礎的なプロファイルが浮かび上がります。このアプローチにより、市場行動に対するより深い洞察が得られ、トレーダーは各銘柄の特性に合った戦略を体系的に組み立てられるようになります。
preview
プライスアクション分析ツールキットの開発(第31回):Python Candlestick Recognitionエンジン(I) - 手動検出

プライスアクション分析ツールキットの開発(第31回):Python Candlestick Recognitionエンジン(I) - 手動検出

ローソク足パターンはプライスアクション取引において基本的な要素であり、市場の反転や継続の可能性を示す貴重な手がかりを提供します。信頼できるツールを想像してみてください。このツールは、新しい価格バーが生成されるたびにそれを監視し、包み足、ハンマー、十字線、スターなどの主要な形成を特定し、重要な取引セットアップが検出された際に即座に通知します。これがまさに私たちが開発した機能です。このシステムは、取引初心者の方から経験豊富なプロフェッショナルまで幅広く活用できます。ローソク足パターンをリアルタイムで通知することで、取引の実行に集中し、より自信を持って効率的に取引をおこなうことが可能になります。以下では、本ツールの動作方法と、どのように取引戦略を強化できるかについて詳しく説明します。
preview
サイクルベースの取引システム(DPO)の構築と最適化の方法

サイクルベースの取引システム(DPO)の構築と最適化の方法

本記事では、MQL5におけるDPO(Detrended Price Oscillator、トレンド除去価格オシレーター)を用いた取引システムの設計および最適化手法について解説します。DPOのコアロジックを明確にし、長期トレンドを排除して短期サイクルを抽出する仕組みを示します。さらに、段階的な例とシンプルな戦略を通じて、インジケーターの実装方法、エントリー/エグジット条件の定義、そしてバックテストの実施方法について学ぶことができます。最後に、パフォーマンスを向上させ、市場環境の変化へ適応させるための実践的な最適化手法を紹介します。
preview
Market Sentimentインジケーターの自動化

Market Sentimentインジケーターの自動化

この記事では、市場の状況を強気、弱気、リスクオン、リスクオフ、中立(ニュートラル)に分類するMarket Sentimentカスタムインジケーターを自動化します。エキスパートアドバイザー(EA)は、現在の市場の傾向や方向性の分析プロセスを合理化しながら、一般的なセンチメントに関するリアルタイムの洞察を提供します。
preview
共和分株式による統計的裁定取引(第5回):スクリーニング

共和分株式による統計的裁定取引(第5回):スクリーニング

本記事では、共和分関係にある株式を用いた統計的裁定(アービトラージ)取引戦略のための資産スクリーニングプロセスを提案しています。本システムは、資産のセクターや業界といった経済的要因による通常のフィルタリングから始まり、スコアリングシステムのための基準リストで終わります。スクリーニングに使用される各統計検定(ピアソン相関、エングル=グレンジャー共和分、ジョハンセン共和分、ADF/KPSSの定常性検定)について、それぞれPythonクラスが開発されました。これらのPythonクラスは提供されており、さらに著者によるAIアシスタントを用いたソフトウェア開発に関する個人的なコメントも付されています。
preview
MQL5での取引戦略の自動化(第30回):視覚的フィードバックによるプライスアクションAB-CDハーモニックパターンの作成

MQL5での取引戦略の自動化(第30回):視覚的フィードバックによるプライスアクションAB-CDハーモニックパターンの作成

本記事では、MQL5で弱気、強気双方のAB=CDハーモニックパターンを、ピボットポイントとフィボナッチ比率に基づいて識別し、正確なエントリー、ストップロス、テイクプロフィットレベルを用いて取引を自動化するAB=CDパターンエキスパートアドバイザー(EA)を開発します。さらに、チャートオブジェクトによる視覚的フィードバックによって、トレーダーの洞察を強化します。
preview
リプレイシステムの開発(第78回):新しいChart Trade(V)

リプレイシステムの開発(第78回):新しいChart Trade(V)

本記事では、受信側コードの一部の実装方法について解説します。ここでは、プロトコルの相互作用をテストし理解するためのエキスパートアドバイザー(EA)を実装します。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。
preview
学習中にニューロンを活性化する関数:高速収束の鍵は?

学習中にニューロンを活性化する関数:高速収束の鍵は?

本記事では、ニューラルネットワークの学習における異なる活性化関数と最適化アルゴリズムの相互作用に関する研究を紹介します。特に、古典的なADAMとその集団版であるADAMmを比較し、振動するACONやSnake関数を含む幅広い活性化関数での動作を検証します。最小構成のMLPアーキテクチャ(1-1-1)と単一の学習例を用いることで、活性化関数が最適化に与える影響を他の要因から切り離して観察します。本記事では、活性化関数の境界を利用したネットワーク重みの管理と重み反射機構を提案し、学習における飽和や停滞の問題を回避できることを示します。
preview
MQL5取引ツール(第8回):ドラッグ&最小化可能な拡張情報ダッシュボード

MQL5取引ツール(第8回):ドラッグ&最小化可能な拡張情報ダッシュボード

本記事では、前回のダッシュボードを拡張し、ドラッグ&最小化機能を追加し、ユーザー操作性を向上させながら、複数銘柄のポジションや口座指標のリアルタイム監視を維持する情報ダッシュボードを開発します。
preview
機械学習の限界を克服する(第4回):複数ホライズン予測による既約誤差の回避

機械学習の限界を克服する(第4回):複数ホライズン予測による既約誤差の回避

機械学習は統計学や線形代数の観点から語られることが多いですが、本記事ではモデル予測を幾何学的に理解する視点に注目します。本記事で示したいのは、モデルはターゲットを直接近似しているのではなく、ターゲットを別の座標系に写像することで固有のずれを生み出し、その結果、避けがたい既約誤差が生じる点です。また本記事では、ターゲットとの直接比較ではなく、異なるホライズンにおけるモデルの予測同士を比較する複数ステップ予測の方が実務的かつ有効であることを提案します。この手法を取引モデルに適用すると、基礎モデルを変更することなく、収益性と予測精度が大幅に向上することを確認しました。
preview
カスタム市場センチメント指標の開発

カスタム市場センチメント指標の開発

本記事では、複数の時間足を用いて市場センチメントを判定し、強気、弱気、リスクオン、リスクオフ、中立のいずれかに分類するMarket Sentimentカスタムインジケーターの開発について解説します。多時間足分析を組み合わせることで、トレーダーは市場全体の偏りと短期的な動向をより明確に把握できるようになります。
preview
初級から中級まで:定義(II)

初級から中級まで:定義(II)

本記事では、前回に引き続き#defineディレクティブについて理解を深めていきますが、今回はその第2の使用形態、すなわちマクロの作成に焦点を当てます。このテーマはやや複雑であるため、これまで学習を進めてきたアプリケーションを題材として取り上げながら説明していきます。この記事も楽しんでいただけたら幸いです。
preview
取引におけるニューラルネットワーク:予測符号化を備えたハイブリッド取引フレームワーク(最終回)

取引におけるニューラルネットワーク:予測符号化を備えたハイブリッド取引フレームワーク(最終回)

予測符号化と強化学習アルゴリズムを組み合わせた金融時系列分析用のハイブリッド取引システム「StockFormer」の検討を引き続きおこないます。本システムは、複雑なパターンや資産間の相互依存関係を捉えることを可能にするDiversified Multi-Head Attention (DMH-Attn)機構を備えた、3つのTransformerブランチに基づいています。前回は、フレームワークの理論的な側面に触れ、DMH-Attn機構を実装しました。今回は、モデルのアーキテクチャと学習について解説します。
preview
取引システムの構築(第2回):ポジションサイズ管理の科学

取引システムの構築(第2回):ポジションサイズ管理の科学

期待値がプラスのシステムであっても、ポジションサイズ管理の決定次第で取引が成功するか破綻するかが決まります。ポジションサイズ管理はリスク管理の中心であり、統計的な優位性を現実の利益に変換しつつ、資本を守る役割を担います。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第14回):フィードバックコントローラーにおけるデータ変換を調整パラメータとして捉える

MQL5で自己最適化エキスパートアドバイザーを構築する(第14回):フィードバックコントローラーにおけるデータ変換を調整パラメータとして捉える

前処理は非常に強力でありながら、しばしば軽視されがちな調整パラメータです。その存在は、より注目されるオプティマイザーや華やかなモデル構造の影に隠れています。しかし、前処理のわずかな改善は、利益やリスクに対して予想以上に大きな複利効果をもたらすことがあります。あまりにも多くの場合、このほとんど未踏の領域は単なるルーチン作業として扱われ、手段としてしか意識されません。しかし実際には、前処理は信号を直接増幅することもあれば、容易に破壊してしまうこともあるのです。
preview
MQL5におけるパイプライン

MQL5におけるパイプライン

本記事では、機械学習におけるデータ準備工程の中で、重要性が急速に高まっているデータ前処理パイプラインを取り上げます。前処理パイプラインとは、生データをモデルに入力する前に通す一連の変換ステップを整理し、効率化したものです。一見地味な作業ですが、前処理(特にスケーリング)は学習時間や実行コストを削減するだけでなく、モデルの汎化性能を大きく左右します。本記事ではscikit-learnの前処理関数を中心に扱います。MQL5ウィザードはここでは使用しませんが、後続の記事で取り上げる予定です。
preview
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(XI) - ニュース取引における相関

初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(XI) - ニュース取引における相関

本記事では、金融相関の概念を活用して、主要な経済指標発表時に複数の通貨ペアを取引する際の判断効率を高める方法を検討します。特に、ニュースリリース時のボラティリティ上昇によるリスク増大という課題に焦点を当てます。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第12回):行列分解を用いた線形分類器の構築

MQL5で自己最適化エキスパートアドバイザーを構築する(第12回):行列分解を用いた線形分類器の構築

本記事では、アルゴリズム取引における行列分解の強力な役割、特にMQL5アプリケーション内での活用について探ります。回帰モデルからマルチターゲット分類器まで、実際の例を通して、これらの手法が組み込みのMQL5関数を使ってどれほど容易に統合できるかを示します。価格の方向性を予測する場合でも、インジケーターの挙動をモデル化する場合でも、このガイドは行列手法を用いたインテリジェントな取引システム構築の強固な基盤を提供します。
preview
MetaTraderとGoogleシートがPythonAnywhereで融合:安全なデータフローのガイド

MetaTraderとGoogleシートがPythonAnywhereで融合:安全なデータフローのガイド

本記事では、MetaTraderのデータをGoogleスプレッドシートに安全にエクスポートする方法を紹介します。Googleスプレッドシートはクラウドベースで、保存されたデータにいつでもどこからでもアクセスできるため、非常に有用なソリューションです。トレーダーはGoogleスプレッドシートにエクスポートされた取引データや関連情報にいつでもアクセスでき、将来の取引に向けた分析を自由におこなうことができます。
preview
知っておくべきMQL5ウィザードのテクニック(第85回):ストキャスティクスとFrAMAのパターンを用いたβ-VAEによる推論

知っておくべきMQL5ウィザードのテクニック(第85回):ストキャスティクスとFrAMAのパターンを用いたβ-VAEによる推論

本記事は、ストキャスティクスとフラクタル適応型移動平均の組み合わせを紹介した「第84回」の続きです。今回は推論フェーズでの学習結果の活用に焦点を移し、前回の記事で取り上げた低調なパターンの成績を改善できるかどうかを検討します。ストキャスティクスとFrAMAは、モメンタムとトレンドを補完する関係にあります。推論フェーズでの学習結果の活用では、以前に考察したβ変分オートエンコーダ(β-VAE)のアルゴリズムを再度利用します。また、いつものように、MQL5ウィザードとの統合を目的として設計されたカスタムシグナルクラスの実装も継続します。
preview
ログレコードをマスターする(第10回):抑制機能を実装してログの再表示を防ぐ

ログレコードをマスターする(第10回):抑制機能を実装してログの再表示を防ぐ

Logifyライブラリにおけるログ抑制システムを作成しました。本記事では、CLogifySuppressionクラスがどのようにコンソールのノイズを低減するかについて詳しく説明します。このクラスは、繰り返しや無関係なメッセージを回避するための設定可能なルールを適用します。また、外部設定フレームワーク、検証機構、包括的なテストについても取り上げ、ボットやインジケーター開発時のログ取得における堅牢性と柔軟性を確保しています。
preview
MQL5における単変量時系列への動的モード分解の適用

MQL5における単変量時系列への動的モード分解の適用

動的モード分解(DMD: Dynamic Mode Decomposition)は、主に高次元データセットに対して用いられる手法です。本稿では、DMDを単変量の時系列に適用し、その特性把握や予測に活用できることを示します。その過程で、MQL5に搭載されているDMDの実装、とりわけ新しい行列メソッドであるDynamicModeDecomposition()について詳しく解説します。
preview
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(V) - イベントリマインダーシステム

初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(V) - イベントリマインダーシステム

本ディスカッションでは、News Headline EAに表示される経済指標カレンダーイベントに対して、精緻化されたイベント通知ロジックを統合することで得られる追加的な改善について検討します。この強化により、主要な今後のイベント直前にユーザーがタイムリーに通知を受け取れるようになります。詳細については、本ディスカッションでご確認ください。
preview
MQL5入門(第24回):チャートオブジェクトで取引するEAの構築

MQL5入門(第24回):チャートオブジェクトで取引するEAの構築

本記事では、チャート上に描かれたサポートラインやレジスタンスラインを検出し、それに基づいて自動で取引を実行するエキスパートアドバイザー(EA)の作成方法を解説します。
preview
Parafracオシレーター:パラボリックとフラクタルインジケーターの組み合わせ

Parafracオシレーター:パラボリックとフラクタルインジケーターの組み合わせ

パラボリックSARとフラクタルインジケーターを組み合わせて、新しいオシレーターベースのインジケーターを作成する方法について説明します。両ツールの独自の強みを統合することにより、トレーダーはより洗練された効果的な取引戦略の開発を目指すことができます。
preview
Parafrac V2オシレーター:パラボリックSARとATRの統合

Parafrac V2オシレーター:パラボリックSARとATRの統合

Parafrac V2オシレーターは、パラボリックSARとATR(Average True Range、平均真の範囲)を統合した高度なテクニカル分析ツールです。前バージョンのParafracオシレーターではフラクタルを使用していたため、過去や現在のシグナルを覆い隠すようなスパイクが発生しやすいという課題がありました。Parafrac V2ではATRによるボラティリティ測定を活用することで、トレンドや反転、ダイバージェンスの検出をより滑らかで信頼性の高い方法で行えるようになり、チャートの混雑や分析の過負荷を軽減できます。
preview
共和分株式による統計的裁定取引(第4回):リアルタイムモデル更新

共和分株式による統計的裁定取引(第4回):リアルタイムモデル更新

本記事では、共和分関係にある株式バスケットを対象とした、シンプルでありながら包括的な統計的アービトラージのパイプラインについて解説します。データのダウンロードと保存を行うPythonスクリプト、相関検定、共和分検定、定常性検定、さらにデータベース更新用のMetatrader 5サービスの実装およびそれに対応するエキスパートアドバイザー(EA)も含まれています。また、いくつかの設計上の判断については、参考情報および実験の再現性向上のために本記事に記録しています。
preview
プライスアクション分析ツールキットの開発(第46回):MQL5におけるスマートな可視化を備えたインタラクティブフィボナッチリトレースメントEAの設計

プライスアクション分析ツールキットの開発(第46回):MQL5におけるスマートな可視化を備えたインタラクティブフィボナッチリトレースメントEAの設計

フィボナッチツールは、テクニカル分析で最も人気のあるツールのひとつです。本記事では、価格の動きに応じて動的に反応するリトレースメントおよびエクステンションレベルを描画し、リアルタイムアラート、スタイリッシュなライン、ニュース風のスクロールヘッドラインを提供するインタラクティブフィボナッチEAの作成方法をご紹介します。このEAのもうひとつの大きな利点は柔軟性です。チャート上で高値(A)と安値(B)のスイング値を直接入力できるため、分析したい価格範囲を正確にコントロールできます。
preview
初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(IX) - ニュース取引のための単一チャートでのマルチペア管理

初心者からエキスパートへ:MQL5を使ったアニメーションニュース見出し(IX) - ニュース取引のための単一チャートでのマルチペア管理

ニュース取引では、ボラティリティが高まるため、非常に短時間で複数のポジションや通貨ペアを管理する必要があります。本記事では、News Headline EAにこの機能を統合することで、マルチペア取引の課題にどのように対応できるかを解説します。MQL5を用いたアルゴリズム取引により、マルチペア取引を効率的かつ強力に実現する方法を一緒に探っていきます。
preview
MQL5入門(第25回):チャートオブジェクトで取引するEAの構築(II)

MQL5入門(第25回):チャートオブジェクトで取引するEAの構築(II)

本記事では、チャートオブジェクト、特にトレンドラインと連携するエキスパートアドバイザー(EA)を構築し、ブレイクアウトおよび反転の取引機会を検出し、実行する方法を解説します。EAが有効なシグナルをどのように判定するのか、取引頻度をどのように制御するのか、そしてユーザーが選択した取引戦略との一貫性をどのように維持するのかを学ぶことができます。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第16回):教師あり学習を用いた線形システム同定

MQL5で自己最適化エキスパートアドバイザーを構築する(第16回):教師あり学習を用いた線形システム同定

線形システム同定は、教師あり学習アルゴリズムにおける誤差補正の学習と組み合わせることができます。これにより、統計的モデリング手法に依存したアプリケーションを構築しつつも、モデルが前提とする厳格な仮定の脆弱性を必ずしも引き継ぐことなく設計することが可能になります。従来の教師あり学習アルゴリズムには多くの要件がありますが、それらはフィードバックコントローラーと組み合わせることで補完でき、モデルを補正しながら現在の市場環境に適応させることができます。
preview
知っておくべきMQL5ウィザードのテクニック(第79回):教師あり学習でのゲーターオシレーターとA/Dオシレーターの使用

知っておくべきMQL5ウィザードのテクニック(第79回):教師あり学習でのゲーターオシレーターとA/Dオシレーターの使用

前回の記事では、ゲーターオシレーターとA/Dオシレーターの組み合わせについて、通常の設定における生のシグナルを用いた場合の挙動を確認しました。この2つのインジケーターは、それぞれトレンド指標と出来高指標として相補的に機能します。今回の記事では、その続編として、教師あり学習を活用することで、前回レビューした特徴量パターンの一部をどのように強化できるかを検証します。この教師あり学習アプローチでは、CNN(畳み込みニューラルネットワーク)を用い、カーネル回帰およびドット積類似度を活用して、カーネルやチャネルのサイズを決定しています。今回もこれまでと同様に、MQL5ウィザードでエキスパートアドバイザー(EA)を組み立てられるようにしたカスタムシグナルクラスファイル内で実装しています。
preview
ParafracおよびParafrac V2オシレーターを使用した取引戦略の開発:シングルエントリーパフォーマンスインサイト

ParafracおよびParafrac V2オシレーターを使用した取引戦略の開発:シングルエントリーパフォーマンスインサイト

本記事では、ParaFracオシレーターとその後継であるV2モデルを取引ツールとして紹介し、これらを用いて構築した3種類の取引戦略を解説します。各戦略をテストおよび最適化し、それぞれの強みと弱みを明らかにします。比較分析によって両モデルの性能差を明確にしました。
preview
MQL5入門(第22回):5-0ハーモニックパターンを用いたエキスパートアドバイザーの構築

MQL5入門(第22回):5-0ハーモニックパターンを用いたエキスパートアドバイザーの構築

本記事では、MQL5において5-0ハーモニックパターンを検出して取引する方法、その妥当性をフィボナッチ比率で検証する方法、そしてチャート上に表示する方法について解説します。
preview
共和分株式による統計的裁定取引(第3回):データベースのセットアップ

共和分株式による統計的裁定取引(第3回):データベースのセットアップ

本記事では、新しく作成したデータベースを更新するためのMQL5 Serviceのサンプル実装を紹介します。このデータベースはデータ分析や、共和分関係にある株式バスケットの取引に利用されます。データベース設計の根拠についても詳しく説明し、参照用としてデータディクショナリを文書化します。さらに、データベースの作成、スキーマ初期化、市場データ挿入のためのMQL5とPythonのスクリプトも提供します。
preview
初心者からエキスパートへ:市場期間同期化ツール

初心者からエキスパートへ:市場期間同期化ツール

本ディスカッションでは、上位時間足から下位時間足への同期をおこなうツールを紹介します。このツールは、上位時間足の期間にまたがる市場パターンを分析する際の課題を解決することを目的としています。MetaTrader 5に標準搭載されている期間マーカーは、制限が多く柔軟性に欠けるため、非標準の時間足には対応しにくいことがあります。そこで私たちは、MQL5言語を活用して、下位時間足のチャート上で上位時間足の構造を動的かつ視覚的に表示できるインジケーターを開発しました。このツールは、詳細な市場分析に非常に役立ちます。その機能や実装方法について詳しく知りたい方は、ぜひディスカッションにご参加ください。