Artikel über das Testen von Strategien in MQL5

icon

Wie wird eine Handelsstrategie entwickelt, geschrieben und getestet, wie findet man optimale Systemparameter und analysiert Ergebnisse? Die Plattform MetaTrader bietet den Programmierern von Handelsrobotern viele Möglichkeiten, Handelideen schnell und präzise zu testen.  Erfahren Sie, wie Handelsroboter für mehrere Währungspaare getestet werden und wie man MQL5 Cloud Network für Optimierung nutzen kann.

Die Programmierer automatischer Handelssysteme können mit den Grundlagen des Testens und den Algorithmen der Tickgenerierung im Strategietester beginnen.

Neuer Artikel
letzte | beste
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 17): Ticks und noch mehr Ticks (I)

Entwicklung eines Replay Systems — Marktsimulation (Teil 17): Ticks und noch mehr Ticks (I)

Hier werden wir sehen, wie man etwas wirklich Interessantes, aber gleichzeitig auch sehr Schwieriges umsetzen kann, da bestimmte Punkte sehr verwirrend sein können. Das Schlimmste, was passieren kann, ist, dass einige Händler, die sich für Profis halten, nichts über die Bedeutung dieser Konzepte auf dem Kapitalmarkt wissen. Auch wenn wir uns hier auf die Programmierung konzentrieren, ist das Verständnis einiger der Probleme, die mit dem Markthandel verbunden sind, von entscheidender Bedeutung für das, was wir umsetzen werden.
preview
Algorithmen zur Optimierung mit Populationen Cuckoo-Optimierungsalgorithmus (COA)

Algorithmen zur Optimierung mit Populationen Cuckoo-Optimierungsalgorithmus (COA)

Der nächste Algorithmus, den ich besprechen werde, ist die Optimierung der Kuckuckssuche (Cockoo) mit Levy-Flügen. Dies ist einer der neuesten Optimierungsalgorithmen und ein neuer Spitzenreiter in der Rangliste.
preview
Algorithmen zur Optimierung mit Populationen Ameisenkolonie-Optimierung (ACO)

Algorithmen zur Optimierung mit Populationen Ameisenkolonie-Optimierung (ACO)

Dieses Mal werde ich den Algorithmus der Ameisenkolonie-Optimierung analysieren. Der Algorithmus ist sehr interessant und komplex. In diesem Artikel versuche ich, eine neue Art von ACO zu schaffen.
preview
Algorithmen zur Populationsoptimierung Partikelschwarm (PSO)

Algorithmen zur Populationsoptimierung Partikelschwarm (PSO)

In diesem Artikel werde ich den beliebten Algorithmus der Partikelschwarm-Optimierung (PSO) besprechen. Zuvor haben wir wichtige Eigenschaften von Optimierungsalgorithmen wie Konvergenz, Konvergenzrate, Stabilität und Skalierbarkeit erörtert, einen Prüfstand entwickelt und den einfachsten RNG-Algorithmus betrachtet.
preview
Algorithmen zur Optimierung mit Populationen Grauer-Wolf-Optimierung (GWO)

Algorithmen zur Optimierung mit Populationen Grauer-Wolf-Optimierung (GWO)

Betrachten wir einen der neuesten modernen Optimierungsalgorithmen - die Grey-Wolf-Optimierung. Das originelle Verhalten bei Testfunktionen macht diesen Algorithmus zu einem der interessantesten unter den zuvor besprochenen Algorithmen. Dies ist einer der besten Algorithmen für das Training neuronaler Netze, glatte Funktionen mit vielen Variablen.
preview
Visuelle Auswertung der Optimierungsergebnisse

Visuelle Auswertung der Optimierungsergebnisse

In diesem Artikel geht es um die Erstellung von Diagrammen aller Optimierungsdurchläufe und um die Auswahl des optimalen nutzerdefinierten Kriteriums. Wir werden auch sehen, wie man eine gewünschte Lösung mit wenig MQL5-Kenntnissen erstellen kann, indem man die auf der Website veröffentlichten Artikel und Forumskommentare verwendet.
preview
Backpropagation von Neuronalen Netze mit MQL5-Matrizen

Backpropagation von Neuronalen Netze mit MQL5-Matrizen

Der Artikel beschreibt die Theorie und Praxis der Anwendung des Backpropagation-Algorithmus in MQL5 unter Verwendung von Matrizen. Es bietet vorgefertigte Klassen zusammen mit Beispielen von Skripten, Indikatoren und Expert Advisors.
preview
Die Magie der Zeit von Handelsintervallen mit dem Instrument Frames Analyzer

Die Magie der Zeit von Handelsintervallen mit dem Instrument Frames Analyzer

Was ist Frames Analyzer? Dies ist ein Plug-in-Modul für jeden Expert Advisor zur Analyse von Optimierungsframes während der Parameteroptimierung im Strategietester, aber auch außerhalb des Testers, durch Lesen einer MQD-Datei oder einer Datenbank, die unmittelbar nach der Parameteroptimierung erstellt wird. Sie können diese Optimierungsergebnisse mit anderen Nutzern teilen, die über das Tool Frames Analyzer verfügen, um die Ergebnisse gemeinsam zu diskutieren.
preview
Einen Expert Advisor von Grund auf entwickeln (Teil 30): CHART TRADE als Indikator?

Einen Expert Advisor von Grund auf entwickeln (Teil 30): CHART TRADE als Indikator?

Heute werden wir wieder Chart Trade verwenden, aber dieses Mal wird es ein On-Chart-Indikator sein, der auf dem Chart laufen kann oder auch nicht.
preview
Techniken des MQL5-Assistenten, die Sie kennen sollten (Teil 01): Regressionsanalyse

Techniken des MQL5-Assistenten, die Sie kennen sollten (Teil 01): Regressionsanalyse

Der Händler von heute ist ein Philomath, der fast immer (entweder bewusst oder unbewusst...) nach neuen Ideen sucht, sie ausprobiert, sich entscheidet, sie zu modifizieren oder zu verwerfen; ein explorativer Prozess, der einiges an Sorgfalt kosten sollte. Dies legt eindeutig einen hohen Stellenwert auf die Zeit des Händlers und die Notwendigkeit, Fehler zu vermeiden. Diese Artikelserie wird vorschlagen, dass der MQL5-Assistent eine Hauptstütze für Händler sein sollte. Warum? Denn der Händler spart nicht nur Zeit, indem er seine neuen Ideen mit dem MQL5-Assistenten zusammenstellt, und reduziert Fehler durch doppelte Codierung erheblich. Er ist letztendlich so eingestellt, dass er seine Energie auf die wenigen kritischen Bereiche seiner Handelsphilosophie konzentriert.
preview
Monte Carlo Permutationstests im MetaTrader 5

Monte Carlo Permutationstests im MetaTrader 5

In diesem Artikel sehen wir uns an, wie wir Permutationstests auf der Grundlage von vermischten Tick-Daten für jeden Expert Advisor durchführen können, der nur Metatrader 5 verwendet.
preview
Kontinuierliche Walk-Forward-Optimierung (Teil 8): Programmverbesserungen und Korrekturen

Kontinuierliche Walk-Forward-Optimierung (Teil 8): Programmverbesserungen und Korrekturen

Das Programm wurde aufgrund von Kommentaren und Wünschen von Nutzern und Lesern dieser Artikelserie geändert. Dieser Artikel enthält eine neue Version des Auto-Optimierers. Diese Version implementiert gewünschte Funktionen und bietet weitere Verbesserungen, die ich bei der Arbeit mit dem Programm gefunden habe.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 05): Hinzufügen einer Vorschau

Entwicklung eines Replay-Systems — Marktsimulation (Teil 05): Hinzufügen einer Vorschau

Es ist uns gelungen, einen Weg zu finden, das Replay-System (Marktwiederholungssystem) auf realistische und zugängliche Weise umzusetzen. Lassen Sie uns nun unser Projekt fortsetzen und Daten hinzufügen, um das Wiedergabeverhalten zu verbessern.
preview
Algorithmen zur Optimierung mit Populationen: Der Algorithmus intelligenter Wassertropfen (IWD)

Algorithmen zur Optimierung mit Populationen: Der Algorithmus intelligenter Wassertropfen (IWD)

Der Artikel befasst sich mit einem interessanten, von der unbelebten Natur abgeleiteten Algorithmus - intelligente Wassertropfen (IWD), die den Prozess der Flussbettbildung simulieren. Die Ideen dieses Algorithmus ermöglichten es, den bisherigen Spitzenreiter der Bewertung - SDS - deutlich zu verbessern. Der neue Führende (modifizierter SDSm) befindet sich wie üblich im Anhang.
preview
Handelsstrategie auf der Grundlage des verbesserten Indikators zur Erkennung des Kerzenmusters von Doji

Handelsstrategie auf der Grundlage des verbesserten Indikators zur Erkennung des Kerzenmusters von Doji

Der Metabar-Indikator erkennt mehr Kerzen als der herkömmliche Indikator. Prüfen wir, ob dies einen echten Nutzen für den automatisierten Handel bringt.
preview
Modifizierter Grid-Hedge EA in MQL5 (Teil II): Erstellung eines einfachen Grid EA

Modifizierter Grid-Hedge EA in MQL5 (Teil II): Erstellung eines einfachen Grid EA

In diesem Artikel wird die klassische Rasterstrategie untersucht, ihre Automatisierung mit einem Expert Advisor in MQL5 detailliert beschrieben und die ersten Backtest-Ergebnisse analysiert. Wir haben die Notwendigkeit einer hohen Haltekapazität für die Strategie hervorgehoben und Pläne für die Optimierung von Schlüsselparametern wie Abstand, TakeProfit und Losgrößen in zukünftigen Ausgaben skizziert. Die Reihe zielt darauf ab, die Effizienz der Handelsstrategien und die Anpassungsfähigkeit an unterschiedliche Marktbedingungen zu verbessern.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 01): Erste Versuche (I)

Entwicklung eines Replay-Systems — Marktsimulation (Teil 01): Erste Versuche (I)

Wie wäre es, ein System zu schaffen, das es uns ermöglicht, den Markt zu studieren, wenn er geschlossen ist, oder sogar Marktsituationen zu simulieren? Wir beginnen hier eine neue Artikelserie, in der wir uns mit diesem Thema beschäftigen werden.
preview
Algorithmen zur Optimierung mit Populationen Künstliches Bienenvolk (Artificial Bee Colony, ABC)

Algorithmen zur Optimierung mit Populationen Künstliches Bienenvolk (Artificial Bee Colony, ABC)

In diesem Artikel werden wir den Algorithmus eines künstlichen Bienenvolkes untersuchen und unser Wissen durch neue Prinzipien zur Untersuchung funktionaler Räume ergänzen. In diesem Artikel werde ich meine Interpretation der klassischen Version des Algorithmus vorstellen.
preview
Wie man einen Expert Advisor auswählt: Zwanzig starke Kriterien für die Ablehnung eines Handelsroboter

Wie man einen Expert Advisor auswählt: Zwanzig starke Kriterien für die Ablehnung eines Handelsroboter

Dieser Artikel versucht, die Frage zu beantworten: Wie kann man die richtigen Expert Advisor auswählen? Welche sind die besten für unser Portfolio, und wie können wir die große Liste der auf dem Markt erhältlichen Handelsroboter filtern? In diesem Artikel werden zwanzig klare und starke Kriterien für die Ablehnung eines Expert Advisors vorgestellt. Jedes Kriterium wird vorgestellt und gut erklärt, um Ihnen zu helfen, eine nachhaltigere Entscheidung zu treffen und eine profitablere Expert Advisor-Sammlung für Ihre Gewinne aufzubauen.
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 20): FOREX (I)

Entwicklung eines Replay Systems — Marktsimulation (Teil 20): FOREX (I)

Das ursprüngliche Ziel dieses Artikels ist es nicht, alle Möglichkeiten des Forex-Handels abzudecken, sondern das System so anzupassen, dass Sie zumindest ein Replay des Marktes durchführen können. Wir lassen die Simulation noch einen Moment auf sich warten. Wenn wir jedoch keine Ticks, sondern nur Balken haben, können wir mit ein wenig Aufwand mögliche Abschlüsse simulieren, die auf dem Forex-Markt passieren könnten. Dies wird der Fall sein, bis wir uns mit der Anpassung des Simulators befassen. Der Versuch, mit Forex-Daten innerhalb des Systems zu arbeiten, ohne sie zu verändern, führt zu einer Reihe von Fehlern.
preview
Automatisierte Parameter-Optimierung für Handelsstrategien mit Python und MQL5

Automatisierte Parameter-Optimierung für Handelsstrategien mit Python und MQL5

Es gibt mehrere Arten von Algorithmen zur Selbstoptimierung von Handelsstrategien und Parametern. Diese Algorithmen werden zur automatischen Verbesserung von Handelsstrategien auf der Grundlage historischer und aktueller Marktdaten eingesetzt. In diesem Artikel werden wir uns eine davon mit Python und MQL5-Beispielen ansehen.
preview
Experimente mit neuronalen Netzen (Teil 1): Die Geometrie neu betrachten

Experimente mit neuronalen Netzen (Teil 1): Die Geometrie neu betrachten

In diesem Artikel werde ich mit Hilfe von Experimenten und unkonventionellen Ansätzen ein profitables Handelssystem entwickeln und prüfen, ob neuronale Netze für Trader eine Hilfe sein können.
preview
Algorithmen zur Optimierung mit Populationen: Differenzielle Evolution (DE)

Algorithmen zur Optimierung mit Populationen: Differenzielle Evolution (DE)

In diesem Artikel werden wir uns mit dem Algorithmus befassen, der von allen bisher diskutierten Algorithmen die umstrittensten Ergebnisse zeigt - der Algorithmus der differentiellen Evolution (DE).
preview
Entwicklung eines Replay Systems — Marktsimulation (Teil 16): Neues System der Klassen

Entwicklung eines Replay Systems — Marktsimulation (Teil 16): Neues System der Klassen

Wir müssen unsere Arbeit besser organisieren. Der Code wächst, und wenn dies nicht jetzt geschieht, wird es unmöglich werden. Lasst uns teilen und erobern. MQL5 erlaubt die Verwendung von Klassen, die bei der Umsetzung dieser Aufgabe helfen, aber dafür müssen wir einige Kenntnisse über Klassen haben. Das, was Anfänger am meisten verwirrt, ist wahrscheinlich die Vererbung. In diesem Artikel werden wir uns ansehen, wie man diese Mechanismen auf praktische und einfache Weise nutzen kann.
preview
MQL5 Wizard-Techniken, die Sie kennen sollten (Teil 06): Fourier-Transformation

MQL5 Wizard-Techniken, die Sie kennen sollten (Teil 06): Fourier-Transformation

Die von Joseph Fourier eingeführte Fourier-Transformation ist ein Mittel zur Zerlegung komplexer Wellen aus Datenpunkten in einfache Teilwellen. Diese Funktion könnte für Händler sehr nützlich sein, und dieser Artikel wirft einen Blick darauf.
preview
Python, ONNX und MetaTrader 5: Erstellen eines RandomForest-Modells mit RobustScaler und PolynomialFeatures zur Datenvorverarbeitung

Python, ONNX und MetaTrader 5: Erstellen eines RandomForest-Modells mit RobustScaler und PolynomialFeatures zur Datenvorverarbeitung

In diesem Artikel werden wir ein Random-Forest-Modell in Python erstellen, das Modell trainieren und es als ONNX-Pipeline mit Datenvorverarbeitung speichern. Danach werden wir das Modell im MetaTrader 5 Terminal verwenden.
preview
Vom Neuling zum Experten: Die wesentliche Reise durch den MQL5-Handel

Vom Neuling zum Experten: Die wesentliche Reise durch den MQL5-Handel

Entfalten Sie Ihr Potenzial! Sie sind von Möglichkeiten umgeben. Entdecken Sie die 3 wichtigsten Geheimnisse, um Ihre MQL5-Reise in Gang zu bringen oder auf die nächste Stufe zu heben. Lassen Sie uns in die Diskussion über Tipps und Tricks für Anfänger und Profis gleichermaßen eintauchen.
preview
Kategorientheorie in MQL5 (Teil 14): Funktoren mit linearen Ordnungen

Kategorientheorie in MQL5 (Teil 14): Funktoren mit linearen Ordnungen

Dieser Artikel, der Teil einer größeren Serie über die Implementierung der Kategorientheorie in MQL5 ist. Er befasst sich mit Funktoren. Wir untersuchen, wie eine lineare Ordnung mit Hilfe von Funktoren auf eine Menge abgebildet werden kann, indem wir zwei Datensätze betrachten, bei denen man normalerweise keinen Zusammenhang vermuten würde.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 07): Erste Verbesserungen (II)

Entwicklung eines Replay-Systems — Marktsimulation (Teil 07): Erste Verbesserungen (II)

Im letzten Artikel haben wir einige Korrekturen vorgenommen und Tests zu unserem Replay System hinzugefügt, um die bestmögliche Stabilität zu gewährleisten. Wir haben auch mit der Erstellung und Verwendung einer Konfigurationsdatei für dieses System begonnen.
preview
Rebuy-Algorithmus: Handelssimulation mit mehreren Währungen

Rebuy-Algorithmus: Handelssimulation mit mehreren Währungen

In diesem Artikel werden wir ein mathematisches Modell zur Simulation der Preisbildung in mehreren Währungen erstellen und die Untersuchung des Diversifizierungsprinzips als Teil der Suche nach Mechanismen zur Steigerung der Handelseffizienz abschließen, die ich im vorherigen Artikel mit theoretischen Berechnungen begonnen habe.
preview
Algorithmen zur Optimierung mit Populationen Fish School Search (FSS)

Algorithmen zur Optimierung mit Populationen Fish School Search (FSS)

Fish School Search (FSS, Suche mittels Fischschulen) ist ein neuer Optimierungsalgorithmus, der durch das Verhalten von Fischen in einem Schwarm inspiriert wurde, von denen die meisten (bis zu 80 %) in einer organisierten Gemeinschaft von Verwandten schwimmen. Es ist erwiesen, dass Fischansammlungen eine wichtige Rolle für die Effizienz der Nahrungssuche und den Schutz vor Räubern spielen.
preview
Entwicklung eines Roboters in Python und MQL5 (Teil 2): Auswahl, Erstellung und Training von Modellen, Python Custom Tester

Entwicklung eines Roboters in Python und MQL5 (Teil 2): Auswahl, Erstellung und Training von Modellen, Python Custom Tester

Wir setzen die Serie von Artikeln über die Entwicklung eines Handelsroboters in Python und MQL5 fort. Heute werden wir das Problem der Auswahl und des Trainings eines Modells, das Testen desselben, die Implementierung der Kreuzvalidierung, die Rastersuche sowie das Problem des Modell-Ensembles lösen.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 7): Auswahl einer Gruppe auf der Grundlage der Vorwärtsperiode

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 7): Auswahl einer Gruppe auf der Grundlage der Vorwärtsperiode

Zuvor haben wir die Auswahl einer Gruppe von Handelsstrategie-Instanzen mit dem Ziel, die Ergebnisse ihrer gemeinsamen Operation zu verbessern, nur für den gleichen Zeitraum bewertet, in dem die Optimierung der einzelnen Instanzen durchgeführt wurde. Mal sehen, was in der Vorwärtsperiode passiert.
preview
Testen und Optimieren von Strategien für binäre Optionen in MetaTrader 5

Testen und Optimieren von Strategien für binäre Optionen in MetaTrader 5

In diesem Artikel werde ich Strategien für binäre Optionen in MetaTrader 5 überprüfen und optimieren.
preview
Experimente mit neuronalen Netzen (Teil 2): Intelligente Optimierung neuronaler Netze

Experimente mit neuronalen Netzen (Teil 2): Intelligente Optimierung neuronaler Netze

In diesem Artikel werde ich mit Hilfe von Experimenten und unkonventionellen Ansätzen ein profitables Handelssystem entwickeln und prüfen, ob neuronale Netze für Händler eine Hilfe sein können. Der MetaTrader 5 als ein autarkes Tool für den Einsatz neuronaler Netze im Handel.
preview
Algorithmen zur Optimierung mit Populationen: Der Boids-Algorithmus

Algorithmen zur Optimierung mit Populationen: Der Boids-Algorithmus

Der Artikel befasst sich mit dem Boids Algorithmus, der auf einzigartigen Beispielen für das Verhalten von Tierschwärmen basiert. Der Boids-Algorithmus wiederum dient als Grundlage für die Schaffung einer ganzen Klasse von Algorithmen, die unter dem Namen „Schwarmintelligenz“ zusammengefasst werden.
preview
Schätzung der zukünftigen Leistung mit Konfidenzintervallen

Schätzung der zukünftigen Leistung mit Konfidenzintervallen

In diesem Artikel befassen wir uns mit der Anwendung von Bootstrapping-Techniken (Bootstrapping: am eigenen Schopf aus dem Sumpf ziehen) als Mittel zur Schätzung der künftigen Leistung einer automatisierten Strategie.
preview
Kategorientheorie in MQL5 (Teil 18): Natürliches Quadrat (Naturality Square)

Kategorientheorie in MQL5 (Teil 18): Natürliches Quadrat (Naturality Square)

In diesem Artikel setzen wir unsere Reihe zur Kategorientheorie fort, indem wir natürliche Transformationen, eine der wichtigsten Säulen des Fachs, vorstellen. Wir befassen uns mit der scheinbar komplexen Definition und gehen dann auf Beispiele und Anwendungen dieser Serie ein: Volatilitätsprognosen.
preview
Bill Williams Strategie mit und ohne andere Indikatoren und Vorhersagen

Bill Williams Strategie mit und ohne andere Indikatoren und Vorhersagen

In diesem Artikel werden wir einen Blick auf eine der berühmten Strategien von Bill Williams werfen, sie diskutieren und versuchen, die Strategie mit anderen Indikatoren und mit Vorhersagen zu verbessern.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 06): Erste Verbesserungen (I)

Entwicklung eines Replay-Systems — Marktsimulation (Teil 06): Erste Verbesserungen (I)

In diesem Artikel werden wir mit der Stabilisierung des gesamten Systems beginnen, ohne die wir möglicherweise nicht in der Lage sind, mit den nächsten Schritten fortzufahren.