Artikel über Datenanalyse und Statistik in MQL5

icon

Artikel über mathematische Modelle und die Gesetze der Wahrscheinlichkeit können für viele Börsenhändler interessant sein. Denn Mathematik liegt technischer Indikatoren zugrunde, und Kenntnisse in Statistik braucht man, um die Ergebnisse des Handels zu analysieren und Strategien zu entwickeln.

Lesen Sie über die Fuzzylogik, digitale Filter, Marktprofil, Kohonenkarten, neuronales Gas und andere Werkzeuge, die man für den Handel verwenden kann.

Neuer Artikel
letzte | beste
preview
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil IX): Code Organisation (III): Kommunikationsmodul

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil IX): Code Organisation (III): Kommunikationsmodul

Nehmen Sie an einer ausführlichen Diskussion über die neuesten Fortschritte im MQL5-Schnittstellendesign teil, wenn wir das neu gestaltete Kommunikations-Panel vorstellen und unsere Serie über den Aufbau des neuen Admin-Panels unter Verwendung von Modularisierungsprinzipien fortsetzen. Wir werden die Klasse CommunicationsDialog Schritt für Schritt entwickeln und ausführlich erklären, wie man sie von der Klasse Dialog erbt. Außerdem werden wir Arrays und die ListView-Klasse in unserer Entwicklung nutzen. Gewinnen Sie umsetzbare Erkenntnisse, um Ihre MQL5-Entwicklungsfähigkeiten zu verbessern - lesen Sie den Artikel und beteiligen Sie sich an der Diskussion im Kommentarbereich!
preview
Ein neuer Ansatz für nutzerdefinierte Kriterien in den Optimierungen (Teil 1): Beispiele für Aktivierungsfunktionen

Ein neuer Ansatz für nutzerdefinierte Kriterien in den Optimierungen (Teil 1): Beispiele für Aktivierungsfunktionen

Der erste einer Reihe von Artikeln, die sich mit der Mathematik der nutzerdefinierten Kriterien befassen, mit besonderem Schwerpunkt auf nichtlinearen Funktionen, die in neuronalen Netzen verwendet werden, MQL5-Code für die Implementierung und die Verwendung von gezielten und korrigierenden Offsets.
preview
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil IX): Code Organisation (II): Modularisierung

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil IX): Code Organisation (II): Modularisierung

In dieser Diskussion gehen wir einen Schritt weiter, indem wir unser MQL5-Programm in kleinere, besser handhabbare Module aufteilen. Diese modularen Komponenten werden dann in das Hauptprogramm integriert, um dessen Organisation und Wartbarkeit zu verbessern. Dieser Ansatz vereinfacht die Struktur unseres Hauptprogramms und macht die einzelnen Komponenten in anderen Expert Advisors (EAs) und Indikatorentwicklungen wiederverwendbar. Durch diesen modularen Aufbau schaffen wir eine solide Grundlage für künftige Erweiterungen, von denen sowohl unser Projekt als auch die breitere Entwicklergemeinschaft profitiert.
preview
Datenwissenschaft und ML (Teil 33): Pandas Dataframe in MQL5, Vereinfachung der Datensammlung für ML-Nutzung

Datenwissenschaft und ML (Teil 33): Pandas Dataframe in MQL5, Vereinfachung der Datensammlung für ML-Nutzung

Bei der Arbeit mit maschinellen Lernmodellen ist es wichtig, die Konsistenz der für Training, Validierung und Tests verwendeten Daten sicherzustellen. In diesem Artikel werden wir unsere eigene Version der Pandas-Bibliothek in MQL5 erstellen, um einen einheitlichen Ansatz für den Umgang mit maschinellen Lerndaten zu gewährleisten und sicherzustellen, dass innerhalb und außerhalb von MQL5, wo der Großteil des Trainings stattfindet, dieselben Daten verwendet werden.
preview
Erstellen eines Handelsadministrator-Panels in MQL5 (Teil IX): Code Organisation (I)

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil IX): Code Organisation (I)

Diese Diskussion befasst sich mit den Herausforderungen, die bei der Arbeit mit großen Codebasen auftreten. Wir werden die besten Praktiken für die Codeorganisation in MQL5 untersuchen und einen praktischen Ansatz zur Verbesserung der Lesbarkeit und Skalierbarkeit des Quellcodes unseres Trading Administrator Panels implementieren. Darüber hinaus wollen wir wiederverwendbare Code-Komponenten entwickeln, von denen andere Entwickler bei der Entwicklung ihrer Algorithmen profitieren können. Lesen Sie weiter und beteiligen Sie sich an der Diskussion.
preview
Robustheitstests für Expert Advisors

Robustheitstests für Expert Advisors

Bei der Entwicklung von Strategien sind viele komplizierte Details zu berücksichtigen, von denen viele für Anfänger nicht besonders interessant sind. Infolgedessen mussten viele Händler, mich eingeschlossen, diese Lektionen auf die harte Tour lernen. Dieser Artikel basiert auf meinen Beobachtungen von häufigen Fallstricken, die den meisten Anfängern bei der Entwicklung von Strategien auf MQL5 begegnen. Es wird eine Reihe von Tipps, Tricks und Beispielen bieten, die dabei helfen, die Untauglichkeit eines EA zu erkennen und die Robustheit unserer eigenen EAs auf einfache Weise zu testen. Ziel ist es, die Leser aufzuklären und ihnen zu helfen, zukünftige Betrügereien beim Kauf von EAs zu vermeiden und Fehler bei der eigenen Strategieentwicklung zu verhindern.
preview
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 13): RSI-Sentinel-Tool

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 13): RSI-Sentinel-Tool

Die Kursentwicklung kann durch die Identifizierung von Divergenzen effektiv analysiert werden, wobei technische Indikatoren wie der RSI wichtige Bestätigungssignale liefern. Im folgenden Artikel erläutern wir, wie eine automatisierte RSI-Divergenzanalyse Trendfortsetzungen und -umkehrungen erkennen kann und damit wertvolle Einblicke in die Marktstimmung bietet.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 54): Verstärkungslernen mit hybriden SAC und Tensoren

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 54): Verstärkungslernen mit hybriden SAC und Tensoren

Soft Actor Critic ist ein Reinforcement Learning-Algorithmus, den wir bereits in einem früheren Artikel vorgestellt haben, in dem wir auch Python und ONNX als effiziente Ansätze für das Training von Netzwerken vorgestellt haben. Wir überarbeiten den Algorithmus mit dem Ziel, Tensoren, Berechnungsgraphen, die häufig in Python verwendet werden, zu nutzen.
preview
Trendvorhersage mit LSTM für Trendfolgestrategien

Trendvorhersage mit LSTM für Trendfolgestrategien

Long Short-Term Memory (LSTM) ist eine Art rekurrentes neuronales Netz (RNN), das für die Modellierung sequenzieller Daten entwickelt wurde, indem es langfristige Abhängigkeiten effektiv erfasst und das Problem des verschwindenden Gradienten löst. In diesem Artikel werden wir untersuchen, wie LSTM zur Vorhersage zukünftiger Trends eingesetzt werden kann, um die Leistung von Trendfolgestrategien zu verbessern. Der Artikel behandelt die Einführung von Schlüsselkonzepten und die Motivation hinter der Entwicklung, das Abrufen von Daten aus dem MetaTrader 5, die Verwendung dieser Daten zum Trainieren des Modells in Python, die Integration des maschinellen Lernmodells in MQL5 und die Reflexion der Ergebnisse und zukünftigen Bestrebungen auf der Grundlage von statistischem Backtesting.
preview
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 12): External Flow (III) TrendMap

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 12): External Flow (III) TrendMap

Das Marktgeschehen wird von den Kräften zwischen Bullen und Bären bestimmt. Es gibt bestimmte Niveaus, die der Markt aufgrund der auf ihn wirkenden Kräfte einhält. Fibonacci- und VWAP-Levels sind besonders wirkungsvoll, um das Marktverhalten zu beeinflussen. Begleiten Sie mich in diesem Artikel bei der Erforschung einer Strategie, die auf VWAP und Fibonacci-Levels zur Signalgenerierung basiert.
preview
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 11): Heikin Ashi Signal EA

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 11): Heikin Ashi Signal EA

MQL5 bietet unendlich viele Möglichkeiten, automatisierte Handelssysteme zu entwickeln, die auf Ihre Wünsche zugeschnitten sind. Wussten Sie, dass er sogar komplexe mathematische Berechnungen durchführen kann? In diesem Artikel stellen wir die japanische Heikin Ashi Technik als automatisierte Handelsstrategie vor.
preview
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 10): External Flow (II) VWAP

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 10): External Flow (II) VWAP

Meistern Sie die Macht des VWAP mit unserem umfassenden Leitfaden! Lernen Sie, wie Sie mit MQL5 und Python die VWAP-Analyse in Ihre Handelsstrategie integrieren können. Optimieren Sie Ihre Markteinblicke und verbessern Sie Ihre Handelsentscheidungen noch heute.
preview
Gating-Mechanismen beim Ensemblelernen

Gating-Mechanismen beim Ensemblelernen

In diesem Artikel setzen wir unsere Untersuchung von Ensemblemodellen fort, indem wir das Konzept der Gates erörtern, insbesondere wie sie bei der Kombination von Modellergebnissen nützlich sein können, um entweder die Vorhersagegenauigkeit oder die Modellgeneralisierung zu verbessern.
preview
Neudefinition der Indikatoren von MQL5 und dem MetaTrader 5

Neudefinition der Indikatoren von MQL5 und dem MetaTrader 5

Ein innovativer Ansatz zur Erfassung von Indikatorinformationen in MQL5 ermöglicht eine flexiblere und rationalisierte Datenanalyse, indem Entwickler nutzerdefinierte Eingaben an Indikatoren für sofortige Berechnungen weitergeben können. Dieser Ansatz ist besonders nützlich für den algorithmischen Handel, da er eine bessere Kontrolle über die von den Indikatoren verarbeiteten Informationen ermöglicht und über die traditionellen Beschränkungen hinausgeht.
preview
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 9): External Flow

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 9): External Flow

In diesem Artikel wird eine neue Dimension der Analyse unter Verwendung externer Bibliotheken untersucht, die speziell für fortgeschrittene Analysen entwickelt wurden. Diese Bibliotheken, wie z. B. Pandas, bieten leistungsstarke Werkzeuge für die Verarbeitung und Interpretation komplexer Daten, die es Händlern ermöglichen, tiefere Einblicke in die Marktdynamik zu gewinnen. Durch die Integration solcher Technologien können wir die Lücke zwischen Rohdaten und umsetzbaren Strategien schließen. Begleiten Sie uns, wenn wir den Grundstein für diesen innovativen Ansatz legen und das Potenzial der Kombination von Technologie und Handelskompetenz erschließen.
preview
Hidden Markov Modelle für trendfolgende Volatilitätsprognosen

Hidden Markov Modelle für trendfolgende Volatilitätsprognosen

Hidden Markov Modelle (HMM) sind leistungsstarke statistische Instrumente, die durch die Analyse beobachtbarer Kursbewegungen die zugrunde liegenden Marktzustände identifizieren. Im Handel verbessern HMM die Volatilitätsprognose und liefern Informationen für Trendfolgestrategien, indem sie Marktverschiebungen modellieren und antizipieren. In diesem Artikel stellen wir das vollständige Verfahren zur Entwicklung einer Trendfolgestrategie vor, die HMM zur Prognose der Volatilität als Filter einsetzt.
preview
MQL5 Handels-Toolkit (Teil 7): Erweitern der History Management EX5-Bibliothek um die Funktionen für den zuletzt stornierten, schwebenden Auftrag

MQL5 Handels-Toolkit (Teil 7): Erweitern der History Management EX5-Bibliothek um die Funktionen für den zuletzt stornierten, schwebenden Auftrag

Erfahren Sie, wie Sie das letzte Modul in der Bibliothek des History Manager EX5 erstellen, wobei Sie sich auf die Funktionen konzentrieren, die für die Bearbeitung des zuletzt stornierten, schwebenden Auftrags verantwortlich sind. Damit haben Sie die Möglichkeit, wichtige Details zu stornierten offenen Aufträgen mit MQL5 effizient abzurufen und zu speichern.
preview
Integration von Broker-APIs mit Expert Advisors unter Verwendung von MQL5 und Python

Integration von Broker-APIs mit Expert Advisors unter Verwendung von MQL5 und Python

In diesem Artikel besprechen wir die Implementierung von MQL5 in Verbindung mit Python, um brokerbezogene Operationen durchzuführen. Stellen Sie sich vor, dass ein kontinuierlich laufender Expert Advisor (EA) auf einem VPS gehostet wird, der in Ihrem Namen handelt. An einem bestimmten Punkt wird die Fähigkeit des EA, Mittel zu verwalten, von entscheidender Bedeutung. Dazu gehören Vorgänge wie die Aufladung Ihres Handelskontos und die Einleitung von Abhebungen. In dieser Diskussion werden wir die Vorteile und die praktische Umsetzung dieser Funktionen beleuchten, um eine nahtlose Integration des Fondsmanagements in Ihre Handelsstrategie zu gewährleisten. Bleiben Sie dran!
preview
MQL5 Handels-Toolkit (Teil 6): Erweitern der Bibliothek der History Management EX5 mit den Funktionen für den zuletzt ausgelösten, schwebenden Auftrag

MQL5 Handels-Toolkit (Teil 6): Erweitern der Bibliothek der History Management EX5 mit den Funktionen für den zuletzt ausgelösten, schwebenden Auftrag

Lernen Sie, wie Sie ein EX5-Modul mit exportierbaren Funktionen erstellen, die reibungslos Daten für den zuletzt ausgelösten, schwebenden Auftrag abfragen und speichern. In dieser umfassenden Schritt-für-Schritt-Anleitung werden wir die Bibliothek von History Management EX5 durch die Entwicklung dedizierter und unterteilter Funktionen erweitern, um wesentliche Eigenschaften des letzten ausgelösten, schwebenden Auftrags abzurufen. Zu diesen Eigenschaften gehören die Auftragsart, die Einrichtungszeit, die Ausführungszeit, die Art der Zuweisung und andere wichtige Details, die für eine effektive Verwaltung und Analyse des Handelsverlaufs ausstehender Aufträge erforderlich sind.
preview
Algorithmus für eine auf künstlichen Ökosystemen basierende Optimierung (AEO)

Algorithmus für eine auf künstlichen Ökosystemen basierende Optimierung (AEO)

Der Artikel befasst sich mit einem metaheuristischen AEO-Algorithmus (Artificial Ecosystem-based Optimization), der Interaktionen zwischen Ökosystemkomponenten simuliert, indem er eine anfängliche Lösungspopulation erstellt und adaptive Aktualisierungsstrategien anwendet, und beschreibt im Detail die Phasen des AEO-Betriebs, einschließlich der Verbrauchs- und Zersetzungsphasen, sowie verschiedene Agentenverhaltensstrategien. Der Artikel stellt die Merkmale und Vorteile dieses Algorithmus vor.
preview
Entwicklung eines Replay-Systems (Teil 69): Das richtige Bestimmen der Zeit (II)

Entwicklung eines Replay-Systems (Teil 69): Das richtige Bestimmen der Zeit (II)

Heute werden wir uns ansehen, warum wir die iSpread-Funktion benötigen. Gleichzeitig werden wir verstehen, wie das System uns über die verbleibende Zeit des Balkens informiert, wenn kein einziger Tick dafür verfügbar ist. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
preview
Entwicklung eines Replay-Systems (Teil 68): Das richtige Bestimmen der Zeit (I)

Entwicklung eines Replay-Systems (Teil 68): Das richtige Bestimmen der Zeit (I)

Heute werden wir weiter daran arbeiten, dass der Mauszeiger uns anzeigt, wie viel Zeit in Zeiten geringer Liquidität noch auf einem Balken verbleibt. Obwohl es auf den ersten Blick einfach erscheint, ist diese Aufgabe in Wirklichkeit viel schwieriger. Dabei gibt es einige Hindernisse, die wir überwinden müssen. Daher ist es wichtig, dass Sie den ersten Teil dieser Teilserie gut verstehen, damit Sie die folgenden Teile verstehen können.
preview
Entwicklung eines Replay-Systems (Teil 67): Verfeinerung des Kontrollindikators

Entwicklung eines Replay-Systems (Teil 67): Verfeinerung des Kontrollindikators

In diesem Artikel werden wir uns ansehen, was mit ein wenig Code-Verfeinerung erreicht werden kann. Diese Verfeinerung zielt darauf ab, unseren Code zu vereinfachen, mehr Gebrauch von MQL5-Bibliotheksaufrufen zu machen und ihn vor allem viel stabiler, sicherer und einfacher in anderen Projekten zu verwenden, die wir in Zukunft entwickeln werden.
preview
Vorhersage von Wechselkursen mit klassischen Methoden des maschinellen Lernens: Logit- und Probit-Modelle

Vorhersage von Wechselkursen mit klassischen Methoden des maschinellen Lernens: Logit- und Probit-Modelle

In diesem Artikel wird der Versuch unternommen, einen Handels-EA zur Vorhersage von Wechselkursen zu erstellen. Der Algorithmus basiert auf klassischen Klassifikationsmodellen - logistische und Probit-Regression. Das Kriterium des Wahrscheinlichkeitsquotienten wird als Filter für Handelssignale verwendet.
preview
Wirtschaftsprognosen: Erkunden des Potenzials von Python

Wirtschaftsprognosen: Erkunden des Potenzials von Python

Wie kann man die Wirtschaftsdaten der Weltbank für Prognosen nutzen? Was passiert, wenn man KI-Modelle und Wirtschaft kombiniert?
preview
Entwicklung eines Replay-Systems (Teil 66): Abspielen des Dienstes (VII)

Entwicklung eines Replay-Systems (Teil 66): Abspielen des Dienstes (VII)

In diesem Artikel werden wir die erste Lösung implementieren, mit der wir bestimmen können, wann ein neuer Balken im Chart erscheinen kann. Diese Lösung ist in einer Vielzahl von Situationen anwendbar. Das Verständnis seiner Entwicklung wird Ihnen helfen, mehrere wichtige Aspekte zu verstehen. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
preview
Finden von nutzerdefinierten Währungspaar-Mustern in Python mit MetaTrader 5

Finden von nutzerdefinierten Währungspaar-Mustern in Python mit MetaTrader 5

Gibt es auf dem Devisenmarkt wiederkehrende Muster und Regelmäßigkeiten? Ich beschloss, mein eigenes System zur Musteranalyse mit Python und MetaTrader 5 zu entwickeln. Eine Art Symbiose aus Mathematik und Programmierung zur Eroberung des Forex.
preview
Hochfrequenz-Arbitrage-Handelssystem in Python mit MetaTrader 5

Hochfrequenz-Arbitrage-Handelssystem in Python mit MetaTrader 5

In diesem Artikel werden wir ein Arbitrationssystem erstellen, das in den Augen der Broker legal bleibt, Tausende von synthetischen Preisen auf dem Forex-Markt erstellt, sie analysiert und erfolgreich mit Gewinn handelt.
preview
Atmosphere Clouds Model Optimization (ACMO): Die Praxis

Atmosphere Clouds Model Optimization (ACMO): Die Praxis

In diesem Artikel werden wir uns weiter mit der Implementierung des ACMO-Algorithmus (Atmospheric Cloud Model Optimization) beschäftigen. Wir werden insbesondere zwei Schlüsselaspekte erörtern: die Bewegung von Wolken in Tiefdruckgebiete und die Regensimulation, einschließlich der Initialisierung von Tröpfchen und ihrer Verteilung auf die Wolken. Wir werden uns auch mit anderen Methoden befassen, die eine wichtige Rolle bei der Verwaltung des Zustands von Wolken und der Gewährleistung ihrer Interaktion mit der Umwelt spielen.
preview
Entwicklung eines Replay-Systems (Teil 65): Abspielen des Dienstes (VI)

Entwicklung eines Replay-Systems (Teil 65): Abspielen des Dienstes (VI)

In diesem Artikel werden wir uns ansehen, wie das Mauszeigerproblem bei der Verwendung in Verbindung mit einer Wiedergabe-/Simulationsanwendung implementiert und gelöst werden kann. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
preview
Anwendung der lokalisierten Merkmalsauswahl in Python und MQL5

Anwendung der lokalisierten Merkmalsauswahl in Python und MQL5

In diesem Artikel wird ein Algorithmus zur Merkmalsauswahl untersucht, der in dem Artikel „Local Feature Selection for Data Classification“ von Narges Armanfard et al. Der Algorithmus ist in Python implementiert, um binäre Klassifizierungsmodelle zu erstellen, die in MetaTrader 5-Anwendungen für Inferenzen integriert werden können.
preview
Entwicklung eines Replay-Systems (Teil 64): Abspielen des Dienstes (V)

Entwicklung eines Replay-Systems (Teil 64): Abspielen des Dienstes (V)

In diesem Artikel werden wir uns ansehen, wie zwei Fehler im Code behoben werden können. Ich werde jedoch versuchen, sie so zu erklären, dass Sie als Programmieranfänger verstehen, dass die Dinge nicht immer so laufen, wie Sie es erwarten. Wie auch immer, dies ist eine Gelegenheit, zu lernen. Der hier dargestellte Inhalt ist ausschließlich für Bildungszwecke bestimmt. Dieser Antrag sollte keinesfalls als endgültiges Dokument betrachtet werden, das lediglich der Erkundung der vorgestellten Konzepte dient.
preview
Atmosphere Clouds Model Optimization (ACMO): Theorie

Atmosphere Clouds Model Optimization (ACMO): Theorie

Der Artikel ist dem metaheuristischen Algorithmus der Optimierung des Atmosphärenwolkenmodells (ACMO) gewidmet, der das Verhalten von Wolken simuliert, um Optimierungsprobleme zu lösen. Der Algorithmus nutzt die Prinzipien der Wolkenerzeugung, -bewegung und -ausbreitung und passt sich den „Wetterbedingungen“ im Lösungsraum an. Der Artikel zeigt, wie die meteorologische Simulation des Algorithmus optimale Lösungen in einem komplexen Möglichkeitsraum findet, und beschreibt detailliert die Phasen des ACMO-Betriebs, einschließlich der Vorbereitung des „Himmels“, der Wolkenentstehung, der Wolkenbewegung und der Regenkonzentration.
preview
Entwicklung eines Replay-Systems (Teil 63): Abspielen des Dienstes (IV)

Entwicklung eines Replay-Systems (Teil 63): Abspielen des Dienstes (IV)

In diesem Artikel werden wir endlich die Probleme mit der Simulation von Ticks auf einem einminütigen Balken lösen, sodass sie mit echten Ticks koexistieren können. Dies wird uns helfen, Probleme in der Zukunft zu vermeiden. Das hier vorgestellte Material dient ausschließlich zu Bildungszwecken. Die Anwendung sollte unter keinen Umständen zu einem anderen Zweck als zum Erlernen und Beherrschen der vorgestellten Konzepte verwendet werden.
preview
Quantitativer Ansatz für das Risikomanagement: Anwendung des VaR-Modells zur Optimierung eines Multiwährungsportfolios mit Python und MetaTrader 5

Quantitativer Ansatz für das Risikomanagement: Anwendung des VaR-Modells zur Optimierung eines Multiwährungsportfolios mit Python und MetaTrader 5

In diesem Artikel wird das Potenzial des Value-at-Risk (VaR)-Modells für die Optimierung von Portfolios in mehreren Währungen untersucht. Mit Hilfe von Python und der Funktionalität von MetaTrader 5 demonstrieren wir, wie man eine VaR-Analyse für eine effiziente Kapitalallokation und Positionsverwaltung implementiert. Von den theoretischen Grundlagen bis zur praktischen Umsetzung behandelt der Artikel alle Aspekte der Anwendung eines der robustesten Risikoberechnungssysteme - VaR - im algorithmischen Handel.
preview
Entwicklung eines Replay-Systems (Teil 62): Abspielen des Dienstes (III)

Entwicklung eines Replay-Systems (Teil 62): Abspielen des Dienstes (III)

In diesem Artikel befassen wir uns mit dem Problem eines Übermaßes an Ticks, der die Anwendungsleistung bei der Verwendung echter Daten beeinträchtigen kann. Dieses Übermaß beeinträchtigt häufig das korrekte Timing, das erforderlich ist, um einen einminütigen Balken im entsprechenden Fenster zu erstellen.
preview
Entwicklung eines Replay-Systems (Teil 61): Den Dienst abspielen (II)

Entwicklung eines Replay-Systems (Teil 61): Den Dienst abspielen (II)

In diesem Artikel werden wir uns mit Änderungen befassen, die einen effizienteren und sichereren Betrieb des Replay-/Simulationssystems ermöglichen. Ich möchte auch nicht die Aufmerksamkeit derjenigen vernachlässigen, die das Beste durch die Verwendung von Klassen machen wollen. Darüber hinaus werden wir ein spezielles Problem in MQL5 betrachten, das die Codeleistung bei der Arbeit mit Klassen verringert, und erklären, wie man es lösen kann.
preview
Ensemble-Methoden zur Verbesserung von Klassifizierungsaufgaben in MQL5

Ensemble-Methoden zur Verbesserung von Klassifizierungsaufgaben in MQL5

In diesem Artikel stellen wir die Implementierung mehrerer Ensemble-Klassifikatoren in MQL5 vor und erörtern ihre Wirksamkeit in verschiedenen Situationen.
preview
Entwicklung des Swing Entries Monitoring (EA)

Entwicklung des Swing Entries Monitoring (EA)

Wenn sich das Jahr dem Ende zuneigt, denken langfristige Händler oft über die Geschichte des Marktes nach, um sein Verhalten und seine Trends zu analysieren und potenzielle zukünftige Bewegungen zu prognostizieren. In diesem Artikel befassen wir uns mit der Entwicklung eines Expert Advisors (EA) zur langfristigen Überwachung des Einstiegs mit MQL5. Ziel ist es, das Problem verpasster langfristiger Handelsmöglichkeiten zu lösen, das durch manuellen Handel und das Fehlen automatischer Überwachungssysteme verursacht wird. Wir werden eines der am häufigsten gehandelten Paare als Beispiel verwenden, um eine Strategie zu entwickeln und unsere Lösung effektiv zu gestalten.
preview
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 6): Der Mean Reversion Signal Reaper

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 6): Der Mean Reversion Signal Reaper

Während einige Konzepte auf den ersten Blick einfach erscheinen, kann ihre Umsetzung in der Praxis eine ziemliche Herausforderung darstellen. Im folgenden Artikel nehmen wir Sie mit auf eine Reise durch unseren innovativen Ansatz zur Automatisierung eines Expert Advisor (EA), der den Markt mithilfe einer Mean-Reversion-Strategie fachkundig analysiert. Seien Sie dabei, wenn wir die Feinheiten dieses spannenden Automatisierungsprozesses entschlüsseln.