Artikel über Datenanalyse und Statistik in MQL5

icon

Artikel über mathematische Modelle und die Gesetze der Wahrscheinlichkeit können für viele Börsenhändler interessant sein. Denn Mathematik liegt technischer Indikatoren zugrunde, und Kenntnisse in Statistik braucht man, um die Ergebnisse des Handels zu analysieren und Strategien zu entwickeln.

Lesen Sie über die Fuzzylogik, digitale Filter, Marktprofil, Kohonenkarten, neuronales Gas und andere Werkzeuge, die man für den Handel verwenden kann.

Neuer Artikel
letzte | beste
preview
Die ChatGPT-Funktionen von OpenAI im Rahmen der MQL4- und MQL5-Entwicklung

Die ChatGPT-Funktionen von OpenAI im Rahmen der MQL4- und MQL5-Entwicklung

In diesem Artikel werden wir uns mit ChatGPT von OpenAI beschäftigen, um zu verstehen, welche Möglichkeiten es bietet, den Zeit- und Arbeitsaufwand für die Entwicklung von Expert Advisors, Indikatoren und Skripten zu reduzieren. Ich werde Sie schnell durch diese Technologie führen und versuchen, Ihnen zu zeigen, wie Sie sie für die Programmierung in MQL4 und MQL5 richtig einsetzen.
preview
Entwicklung eines Wiedergabesystems — Marktsimulation (Teil 04): Anpassung der Einstellungen (II)

Entwicklung eines Wiedergabesystems — Marktsimulation (Teil 04): Anpassung der Einstellungen (II)

Lassen Sie uns mit der Entwicklung des Systems und der Kontrollen fortfahren. Ohne die Möglichkeit, den Dienst zu kontrollieren, ist es schwierig, Fortschritte zu machen und das System zu verbessern.
preview
Kategorientheorie in MQL5 (Teil 13): Kalenderereignisse mit Datenbankschemata

Kategorientheorie in MQL5 (Teil 13): Kalenderereignisse mit Datenbankschemata

Dieser Artikel, der auf die Implementierung der Kategorientheorie von Ordnungsrelation in MQL5 folgt, untersucht, wie Datenbankschemata für die Klassifizierung in MQL5 eingebunden werden können. Wir werfen einen einführenden Blick darauf, wie Datenbankschemakonzepte mit der Kategorientheorie verbunden werden können, wenn es darum geht, handelsrelevante Textinformationen (string) zu identifizieren. Im Mittelpunkt stehen die Kalenderereignisse.
preview
Kategorientheorie in MQL5 (Teil 12): Ordnungsrelationen

Kategorientheorie in MQL5 (Teil 12): Ordnungsrelationen

Dieser Artikel, der Teil einer Serie ist, die der kategorientheoretischen Implementierung von Graphen in MQL5 folgt, befasst sich mit Ordnungen. Wir untersuchen, wie Konzepte der Ordnungstheorie monoide Mengen bei der Information über Handelsentscheidungen unterstützen können, indem wir zwei wichtige Ordnungstypen betrachten.
preview
Kategorientheorie in MQL5 (Teil 11): Graphen

Kategorientheorie in MQL5 (Teil 11): Graphen

Dieser Artikel ist die Fortsetzung einer Serie, die sich mit der Implementierung der Kategorientheorie in MQL5 beschäftigt. Hier untersuchen wir, wie die Graphentheorie mit Monoiden und anderen Datenstrukturen bei der Entwicklung einer Ausstiegsstrategie für ein Handelssystem integriert werden kann.
preview
Prognose mit ARIMA-Modellen in MQL5

Prognose mit ARIMA-Modellen in MQL5

In diesem Artikel setzen wir die Entwicklung der CArima-Klasse zur Erstellung von ARIMA-Modellen fort, indem wir intuitive Methoden hinzufügen, die Vorhersagen ermöglichen.
preview
Kategorientheorie (Teil 9): Monoid-Aktionen

Kategorientheorie (Teil 9): Monoid-Aktionen

Dieser Artikel setzt die Serie über die Implementierung der Kategorientheorie in MQL5 fort. Hier setzen wir Monoid-Aktionen als Mittel zur Transformation von Monoiden fort, die im vorigen Artikel behandelt wurden und zu mehr Anwendungen führen.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 03): Anpassen der Einstellungen (I)

Entwicklung eines Replay-Systems — Marktsimulation (Teil 03): Anpassen der Einstellungen (I)

Beginnen wir mit der Klärung der gegenwärtigen Situation, denn wir haben keinen optimalen Start hingelegt. Wenn wir es jetzt nicht tun, werden wir bald in Schwierigkeiten sein.
preview
Datenwissenschaft und maschinelles Lernen (Teil 14): Mit Kohonenkarten den Weg in den Märkten finden

Datenwissenschaft und maschinelles Lernen (Teil 14): Mit Kohonenkarten den Weg in den Märkten finden

Sind Sie auf der Suche nach einem innovativen Ansatz für den Handel, der Ihnen hilft, sich auf den komplexen und sich ständig verändernden Märkten zurechtzufinden? Kohonenkarten (Kohonen maps), eine innovative Form künstlicher neuronaler Netze, können Ihnen helfen, verborgene Muster und Trends in Marktdaten aufzudecken. In diesem Artikel werden wir untersuchen, wie Kohonenkarten funktionieren und wie sie zur Entwicklung intelligenter und effektiverer Handelsstrategien genutzt werden können. Egal, ob Sie ein erfahrener Trader sind oder gerade erst anfangen, Sie werden diesen aufregenden neuen Ansatz für den Handel nicht verpassen wollen.
preview
Frequenzbereichsdarstellungen von Zeitreihen: Das Leistungsspektrum

Frequenzbereichsdarstellungen von Zeitreihen: Das Leistungsspektrum

In diesem Artikel erörtern wir Methoden zur Analyse von Zeitreihen im Frequenzbereich. Hervorhebung des Nutzens der Untersuchung der Leistungsspektren von Zeitreihen bei der Erstellung von Vorhersagemodellen. In diesem Artikel werden wir einige der nützlichen Perspektiven erörtern, die sich aus der Analyse von Zeitreihen im Frequenzbereich unter Verwendung der diskreten Fourier-Transformation (dft) ergeben.
preview
Rebuy-Algorithmus: Handelssimulation mit mehreren Währungen

Rebuy-Algorithmus: Handelssimulation mit mehreren Währungen

In diesem Artikel werden wir ein mathematisches Modell zur Simulation der Preisbildung in mehreren Währungen erstellen und die Untersuchung des Diversifizierungsprinzips als Teil der Suche nach Mechanismen zur Steigerung der Handelseffizienz abschließen, die ich im vorherigen Artikel mit theoretischen Berechnungen begonnen habe.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 02): Erste Versuche (II)

Entwicklung eines Replay-Systems — Marktsimulation (Teil 02): Erste Versuche (II)

Diesmal wollen wir einen anderen Ansatz wählen, um das 1-Minuten-Ziel zu erreichen. Diese Aufgabe ist jedoch nicht so einfach, wie man vielleicht denkt.
preview
Entwicklung eines Replay-Systems — Marktsimulation (Teil 01): Erste Versuche (I)

Entwicklung eines Replay-Systems — Marktsimulation (Teil 01): Erste Versuche (I)

Wie wäre es, ein System zu schaffen, das es uns ermöglicht, den Markt zu studieren, wenn er geschlossen ist, oder sogar Marktsituationen zu simulieren? Wir beginnen hier eine neue Artikelserie, in der wir uns mit diesem Thema beschäftigen werden.
preview
Kategorientheorie in MQL5 (Teil 8): Monoide

Kategorientheorie in MQL5 (Teil 8): Monoide

Dieser Artikel setzt die Serie über die Implementierung der Kategorientheorie in MQL5 fort. Hier führen wir Monoide als Bereich (Menge) ein, der die Kategorientheorie von anderen Datenklassifizierungsmethoden abhebt, indem er Regeln und ein Identitätselement enthält.
preview
MQL5 Wizard-Techniken, die Sie kennen sollten (Teil 06): Fourier-Transformation

MQL5 Wizard-Techniken, die Sie kennen sollten (Teil 06): Fourier-Transformation

Die von Joseph Fourier eingeführte Fourier-Transformation ist ein Mittel zur Zerlegung komplexer Wellen aus Datenpunkten in einfache Teilwellen. Diese Funktion könnte für Händler sehr nützlich sein, und dieser Artikel wirft einen Blick darauf.
preview
Kategorientheorie in MQL5 (Teil 7): Mehrere, relative und indizierte Domänen

Kategorientheorie in MQL5 (Teil 7): Mehrere, relative und indizierte Domänen

Die Kategorientheorie ist ein vielfältiger und expandierender Zweig der Mathematik, der erst seit kurzem in der MQL5-Gemeinschaft Beachtung findet. In dieser Artikelserie sollen einige der Konzepte und Axiome erforscht und untersucht werden, mit dem übergeordneten Ziel, eine offene Bibliothek einzurichten, die Einblicke gewährt und hoffentlich auch die Nutzung dieses bemerkenswerten Bereichs für die Strategieentwicklung von Händlern fördert.
preview
Rebuy-Algorithmus: Mathematisches Modell zur Effizienzsteigerung

Rebuy-Algorithmus: Mathematisches Modell zur Effizienzsteigerung

In diesem Artikel werden wir den Rebuy-Algorithmus für ein tieferes Verständnis der Effizienz von Handelssystemen verwenden und uns mit den allgemeinen Grundsätzen der Verbesserung der Handelseffizienz unter Verwendung von Mathematik und Logik befassen sowie die nicht standardisierten Methoden zur Steigerung der Effizienz im Hinblick auf die Verwendung absolut beliebiger Handelssysteme anwenden.
preview
Implementierung eines ARIMA-Trainingsalgorithmus in MQL5

Implementierung eines ARIMA-Trainingsalgorithmus in MQL5

In diesem Artikel wird ein Algorithmus implementiert, der das autoregressive integrierte gleitende Durchschnittsmodell von Box und Jenkins unter Verwendung der Powells-Methode der Funktionsminimierung anwendet. Box und Jenkins stellten fest, dass die meisten Zeitreihen mit einem oder beiden Rahmen modelliert werden können.
preview
Implementierung des Janus-Faktors in MQL5

Implementierung des Janus-Faktors in MQL5

Gary Anderson entwickelte eine Marktanalysemethode, die auf einer Theorie beruht, die er Janus-Faktor nannte. Die Theorie beschreibt eine Reihe von Indikatoren, mit denen sich Trends aufzeigen und Marktrisiken bewerten lassen. In diesem Artikel werden wir diese Werkzeuge in mql5 implementieren.
preview
Kategorientheorie in MQL5 (Teil 6): Monomorphe Pullbacks und epimorphe Pushouts

Kategorientheorie in MQL5 (Teil 6): Monomorphe Pullbacks und epimorphe Pushouts

Die Kategorientheorie ist ein vielfältiger und expandierender Zweig der Mathematik, der erst seit kurzem in der MQL5-Gemeinschaft Beachtung findet. In dieser Artikelserie sollen einige der Konzepte und Axiome erforscht und untersucht werden, mit dem übergeordneten Ziel, eine offene Bibliothek einzurichten, die Einblicke gewährt und hoffentlich auch die Nutzung dieses bemerkenswerten Bereichs für die Strategieentwicklung von Händlern fördert.
preview
Algorithmen zur Optimierung mit Populationen: Ein dem Elektro-Magnetismus ähnlicher Algorithmus (ЕМ)

Algorithmen zur Optimierung mit Populationen: Ein dem Elektro-Magnetismus ähnlicher Algorithmus (ЕМ)

Der Artikel beschreibt die Prinzipien, Methoden und Möglichkeiten der Anwendung des elektromagnetischen Algorithmus bei verschiedenen Optimierungsproblemen. Der EM-Algorithmus ist ein effizientes Optimierungswerkzeug, das mit großen Datenmengen und mehrdimensionalen Funktionen arbeiten kann.
preview
Datenwissenschaft und maschinelles Lernen (Teil 13): Verbessern Sie Ihre Finanzmarktanalyse mit der Principal Component Analysis (PCA)

Datenwissenschaft und maschinelles Lernen (Teil 13): Verbessern Sie Ihre Finanzmarktanalyse mit der Principal Component Analysis (PCA)

Revolutionieren Sie Ihre Finanzmarktanalyse mit der Principal Component Analysis (PCA, Hauptkomponentenanalyse)! Entdecken Sie, wie diese leistungsstarke Technik verborgene Muster in Ihren Daten entschlüsseln, latente Markttrends aufdecken und Ihre Anlagestrategien optimieren kann. In diesem Artikel untersuchen wir, wie die PCA eine neue Sichtweise für die Analyse komplexer Finanzdaten bieten kann, die Erkenntnisse zutage fördert, die bei herkömmlichen Ansätzen übersehen würden. Finden Sie heraus, wie die Anwendung von PCA auf Finanzmarktdaten Ihnen einen Wettbewerbsvorteil verschaffen und Ihnen helfen kann, der Zeit voraus zu sein
preview
Algorithmen zur Optimierung mit Populationen: Saplings Sowing and Growing up (SSG)

Algorithmen zur Optimierung mit Populationen: Saplings Sowing and Growing up (SSG)

Der Algorithmus Saplings Sowing and Growing up (SSG, Setzen, Säen und Wachsen) wurde von einem der widerstandsfähigsten Organismen der Erde inspiriert, der unter den verschiedensten Bedingungen überleben kann.
preview
Algorithmen zur Optimierung mit Populationen: Der Affen-Algorithmus (Monkey Algorithmus, MA)

Algorithmen zur Optimierung mit Populationen: Der Affen-Algorithmus (Monkey Algorithmus, MA)

In diesem Artikel werde ich den Optimierungsalgorithmus Affen-Algorithmus (MA, Monkey Algorithmus) betrachten. Die Fähigkeit dieser Tiere, schwierige Hindernisse zu überwinden und die unzugänglichsten Baumkronen zu erreichen, bildete die Grundlage für die Idee des MA-Algorithmus.
preview
Kategorientheorie in MQL5 (Teil 3)

Kategorientheorie in MQL5 (Teil 3)

Die Kategorientheorie ist ein vielfältiger und expandierender Zweig der Mathematik, der in der MQL-Gemeinschaft noch relativ unentdeckt ist. In dieser Artikelserie sollen einige der Konzepte vorgestellt und untersucht werden, mit dem übergeordneten Ziel, eine offene Bibliothek einzurichten, die Einblicke gewährt und hoffentlich die Nutzung dieses bemerkenswerten Bereichs für die Strategieentwicklung von Händlern fördert.
preview
Datenwissenschaft und maschinelles Lernen (Teil 11): Naïve Bayes, Wahrscheinlichkeitsrechnung im Handel

Datenwissenschaft und maschinelles Lernen (Teil 11): Naïve Bayes, Wahrscheinlichkeitsrechnung im Handel

Der Handel mit Wahrscheinlichkeiten ist wie ein Drahtseilakt - er erfordert Präzision, Ausgewogenheit und ein ausgeprägtes Risikobewusstsein. In der Welt des Handels ist die Wahrscheinlichkeit alles. Das ist der Unterschied zwischen Erfolg und Misserfolg, Gewinn und Verlust. Indem sie sich die Macht der Wahrscheinlichkeit zunutze machen, können Händler fundierte Entscheidungen treffen, Risiken effektiv verwalten und ihre finanziellen Ziele erreichen. Ob Sie nun ein erfahrener Anleger oder ein Anfänger sind, das Verständnis der Wahrscheinlichkeit ist der Schlüssel zur Entfaltung Ihres Handelspotenzials. In diesem Artikel werden wir die aufregende Welt des Handels mit Wahrscheinlichkeiten erkunden und Ihnen zeigen, wie Sie Ihr Handelsspiel auf die nächste Stufe heben können.
preview
Algorithmen zur Optimierung mit Populationen: Harmonie-Suche (HS)

Algorithmen zur Optimierung mit Populationen: Harmonie-Suche (HS)

In diesem Artikel werde ich den leistungsstärksten Optimierungsalgorithmus untersuchen und testen - die Harmonie-Suche (HS), inspiriert durch den Prozess der Suche nach der perfekten Klangharmonie. Welcher Algorithmus ist nun der führende in unserer Bewertung?
preview
Algorithmen zur Optimierung mit Populationen: der Gravitationssuchalgorithmus (GSA)

Algorithmen zur Optimierung mit Populationen: der Gravitationssuchalgorithmus (GSA)

GSA ist ein von der unbelebten Natur inspirierter Populationsoptimierungsalgorithmus. Dank des in den Algorithmus implementierten Newton'schen Gravitationsgesetzes können wir dank der hohen Zuverlässigkeit der Modellierung der Interaktion physikalischer Körper den bezaubernden Tanz von Planetensystemen und Galaxienhaufen beobachten. In diesem Artikel möchte ich einen der interessantesten und originellsten Optimierungsalgorithmen vorstellen. Der Simulator für die Bewegung von Raumobjekten ist ebenfalls vorhanden.
preview
Alan Andrews und seine Methoden der Zeitreihenanalyse

Alan Andrews und seine Methoden der Zeitreihenanalyse

Alan Andrews ist einer der berühmtesten „Ausbilder“ der modernen Welt auf dem Gebiet des Handels. Seine „pitchfork“ (Heugabel) ist in fast allen modernen Kursanalyseprogrammen enthalten. Doch die meisten Händler nutzen nicht einmal einen Bruchteil der Möglichkeiten, die dieses Instrument bietet. Im Übrigen enthält der ursprüngliche Lehrgang von Andrews nicht nur eine Beschreibung der Heugabel (obwohl sie das Hauptwerkzeug bleibt), sondern auch einiger anderer nützlicher Konstruktionen. Der Artikel gibt einen Einblick in die wunderbaren Methoden der Chartanalyse, die Andrews in seinem ursprünglichen Kurs lehrte. Achtung, es wird viele Bilder geben.
preview
Neuronale Netze leicht gemacht (Teil 34): Vollständig parametrisierte Quantilfunktion

Neuronale Netze leicht gemacht (Teil 34): Vollständig parametrisierte Quantilfunktion

Wir untersuchen weiterhin verteilte Q-Learning-Algorithmen. In früheren Artikeln haben wir verteilte und Quantil-Q-Learning-Algorithmen besprochen. Im ersten Algorithmus haben wir die Wahrscheinlichkeiten für bestimmte Wertebereiche trainiert. Im zweiten Algorithmus haben wir Bereiche mit einer bestimmten Wahrscheinlichkeit trainiert. In beiden Fällen haben wir a priori Wissen über eine Verteilung verwendet und eine andere trainiert. In diesem Artikel wenden wir uns einem Algorithmus zu, der es dem Modell ermöglicht, für beide Verteilungen trainiert zu werden.
preview
Datenwissenschaft und maschinelles Lernen (Teil 10): Ridge-Regression

Datenwissenschaft und maschinelles Lernen (Teil 10): Ridge-Regression

Die Ridge-Regression ist ein einfaches Verfahren zur Reduzierung der Modellkomplexität und zur Vermeidung einer Überanpassung, die bei einer einfachen linearen Regression auftreten kann.
preview
Messen der Information von Indikatoren

Messen der Information von Indikatoren

Maschinelles Lernen hat sich zu einer beliebten Methode für die Strategieentwicklung entwickelt. Während die Maximierung der Rentabilität und der Vorhersagegenauigkeit stärker in den Vordergrund gerückt wurde, wurde der Bedeutung der Verarbeitung der Daten, die zur Erstellung von Vorhersagemodellen verwendet werden, nicht viel Aufmerksamkeit geschenkt. In diesem Artikel befassen wir uns mit der Verwendung des Konzepts der Entropie zur Bewertung der Eignung von Indikatoren für die Erstellung von Prognosemodellen, wie sie in dem Buch Testing and Tuning Market Trading Systems von Timothy Masters dokumentiert sind.
preview
Algorithmen zur Optimierung mit Populationen Optimierung gemäß einer bakteriellen Nahrungssuche (BFO)

Algorithmen zur Optimierung mit Populationen Optimierung gemäß einer bakteriellen Nahrungssuche (BFO)

Die Strategie der Nahrungssuche des Bakteriums E. coli inspirierte die Wissenschaftler zur Entwicklung des BFO-Optimierungsalgorithmus. Der Algorithmus enthält originelle Ideen und vielversprechende Optimierungsansätze und ist es wert, weiter untersucht zu werden.
preview
Kategorientheorie in MQL5 (Teil 2)

Kategorientheorie in MQL5 (Teil 2)

Die Kategorientheorie ist ein vielfältiger und expandierender Zweig der Mathematik, der in der MQL-Gemeinschaft noch relativ unentdeckt ist. In dieser Artikelserie sollen einige der Konzepte vorgestellt und untersucht werden, mit dem übergeordneten Ziel, eine offene Bibliothek einzurichten, die zu Kommentaren und Diskussionen anregt und hoffentlich die Nutzung dieses bemerkenswerten Bereichs für die Strategieentwicklung der Händler fördert.
preview
Algorithmen zur Populationsoptimierung Optimierung mit invasiven Unkräutern (IWO)

Algorithmen zur Populationsoptimierung Optimierung mit invasiven Unkräutern (IWO)

Die erstaunliche Fähigkeit von Unkräutern, unter verschiedensten Bedingungen zu überleben, wurde zur Idee für einen leistungsstarken Optimierungsalgorithmus. IWO (Invasive Weed Optimization) ist einer der besten Algorithmen unter den bisher geprüften.
preview
Algorithmen zur Optimierung mit Populationen Fledermaus-Algorithmus (BA)

Algorithmen zur Optimierung mit Populationen Fledermaus-Algorithmus (BA)

In diesem Artikel werde ich den Fledermaus-Algorithmus (Bat-Algorithmus, BA) betrachten, der gute Konvergenz bei glatten Funktionen zeigt.
preview
Algorithmen zur Optimierung mit Populationen Firefly-Algorithmus (FA)

Algorithmen zur Optimierung mit Populationen Firefly-Algorithmus (FA)

In diesem Artikel werde ich die Optimierungsmethode des Firefly-Algorithmus (FA) betrachten. Dank der Änderung hat sich der Algorithmus von einem Außenseiter zu einem echten Tabellenführer entwickelt.
preview
Matrix Utils, Erweiterung der Funktionalität der Standardbibliothek für Matrizen und Vektoren

Matrix Utils, Erweiterung der Funktionalität der Standardbibliothek für Matrizen und Vektoren

Matrizen dienen als Grundlage für Algorithmen des maschinellen Lernens und für Computer im Allgemeinen, da sie große mathematische Operationen effektiv verarbeiten können. Die Standardbibliothek bietet alles, was man braucht, aber wir wollen sehen, wie wir sie erweitern können, indem wir in der Datei utils mehrere Funktionen einführen, die in der Bibliothek noch nicht vorhanden sind
preview
Algorithmen zur Optimierung mit Populationen Fish School Search (FSS)

Algorithmen zur Optimierung mit Populationen Fish School Search (FSS)

Fish School Search (FSS, Suche mittels Fischschulen) ist ein neuer Optimierungsalgorithmus, der durch das Verhalten von Fischen in einem Schwarm inspiriert wurde, von denen die meisten (bis zu 80 %) in einer organisierten Gemeinschaft von Verwandten schwimmen. Es ist erwiesen, dass Fischansammlungen eine wichtige Rolle für die Effizienz der Nahrungssuche und den Schutz vor Räubern spielen.
preview
Algorithmen zur Optimierung mit Populationen Cuckoo-Optimierungsalgorithmus (COA)

Algorithmen zur Optimierung mit Populationen Cuckoo-Optimierungsalgorithmus (COA)

Der nächste Algorithmus, den ich besprechen werde, ist die Optimierung der Kuckuckssuche (Cockoo) mit Levy-Flügen. Dies ist einer der neuesten Optimierungsalgorithmen und ein neuer Spitzenreiter in der Rangliste.