Artikel über das Programmieren und Anwenden von Handelsrobotern in MQL5

icon

Expert Advisors erfüllen unterschiedliche Funktionen auf der Plattform MetaTrader. Handelroboter können Finanzinstrumente rund um die Uhr verfolgen, Trades kopieren, Berichte erstellen und abschicken, sogar dem Händler eine speizielle auf seine Bestellung entwickelte grafische Benutzeroberfläche bieten.

In den Artikeln sind Programmierverfahren, mathematische Ideen für Datenverarbeitung, Ratschläge für Erstellung und Bestellung von Handelsrobotern.

Neuer Artikel
letzte | beste
preview
Neuronale Netze leicht gemacht (Teil 50): Soft Actor-Critic (Modelloptimierung)

Neuronale Netze leicht gemacht (Teil 50): Soft Actor-Critic (Modelloptimierung)

Im vorigen Artikel haben wir den Algorithmus Soft Actor-Critic (Akteur-Kritiker) implementiert, konnten aber kein profitables Modell trainieren. Hier werden wir das zuvor erstellte Modell optimieren, um die gewünschten Ergebnisse zu erzielen.
preview
Brute-Force-Ansatz zur Mustersuche (Teil V): Neue Blickwinkel

Brute-Force-Ansatz zur Mustersuche (Teil V): Neue Blickwinkel

In diesem Artikel werde ich einen völlig anderen Ansatz für den algorithmischen Handel vorstellen, den ich nach langer Zeit gefunden habe. Das alles hat natürlich mit meinem Brute-Force-Programm zu tun, das eine Reihe von Änderungen erfahren hat, die es ihm ermöglichen, mehrere Probleme gleichzeitig zu lösen. Dennoch ist der Artikel allgemeiner und so einfach wie möglich gehalten, weshalb er auch für diejenigen geeignet ist, die nichts über Brute-Force wissen.
preview
Verständnis der Auftragsvergabe in MQL5

Verständnis der Auftragsvergabe in MQL5

Bei der Entwicklung jedes Handelssystems gibt es eine Aufgabe, die wir effektiv bewältigen müssen. Diese Aufgabe besteht darin, Aufträge zu erteilen oder das erstellte Handelssystem automatisch mit Aufträgen umgehen zu lassen, da dies in jedem Handelssystem von entscheidender Bedeutung ist. Daher finden Sie in diesem Artikel die meisten Themen, die Sie über diese Aufgabe verstehen müssen, um Ihr Handelssystem in Bezug auf die Auftragsvergabe effektiv zu gestalten.
preview
Datenkennzeichnung für Zeitreihenanalyse (Teil 2): Datensätze mit Trendmarkern mit Python erstellen

Datenkennzeichnung für Zeitreihenanalyse (Teil 2): Datensätze mit Trendmarkern mit Python erstellen

In dieser Artikelserie werden verschiedene Methoden zur Kennzeichnung von Zeitreihen vorgestellt, mit denen Daten erstellt werden können, die den meisten Modellen der künstlichen Intelligenz entsprechen. Eine gezielte und bedarfsgerechte Kennzeichnung von Daten kann dazu führen, dass das trainierte Modell der künstlichen Intelligenz besser mit dem erwarteten Design übereinstimmt, die Genauigkeit unseres Modells verbessert wird und das Modell sogar einen qualitativen Sprung machen kann!
preview
Datenkennzeichnung für Zeitreihenanalyse (Teil 1):Erstellen eines Datensatzes mit Trendmarkierungen durch den EA auf einem Chart

Datenkennzeichnung für Zeitreihenanalyse (Teil 1):Erstellen eines Datensatzes mit Trendmarkierungen durch den EA auf einem Chart

In dieser Artikelserie werden verschiedene Methoden zur Kennzeichnung von Zeitreihen vorgestellt, mit denen Daten erstellt werden können, die den meisten Modellen der künstlichen Intelligenz entsprechen. Eine gezielte und bedarfsgerechte Kennzeichnung von Daten kann dazu führen, dass das trainierte Modell der künstlichen Intelligenz besser mit dem erwarteten Design übereinstimmt, die Genauigkeit unseres Modells verbessert wird und das Modell sogar einen qualitativen Sprung machen kann!
preview
Kategorientheorie in MQL5 (Teil 20): Ein Abstecher über die Selbstaufmerksamkeit (Self-Attention) und den Transformer

Kategorientheorie in MQL5 (Teil 20): Ein Abstecher über die Selbstaufmerksamkeit (Self-Attention) und den Transformer

Wir schweifen in unserer Serie ab, indem wir über einen Teil des Algorithmus zu chatGPT nachdenken. Gibt es Ähnlichkeiten oder Konzepte, die den natürlichen Transformationen entlehnt sind? Wir versuchen, diese und andere Fragen in einem unterhaltsamen Stück zu beantworten, mit unserem Code in einem Signalklassenformat.
preview
Entwicklung eines Qualitätsfaktors für Expert Advisors

Entwicklung eines Qualitätsfaktors für Expert Advisors

In diesem Artikel sehen wir uns an, wie Sie eine Qualitätsbewertung entwickeln, die Ihr Expert Advisor im Strategietester anzeigen kann. Wir werden uns zwei bekannte Berechnungsmethoden ansehen – Van Tharp und Sunny Harris.
preview
Neuronale Netze leicht gemacht (Teil 49): Soft Actor-Critic

Neuronale Netze leicht gemacht (Teil 49): Soft Actor-Critic

Wir setzen unsere Diskussion über Algorithmen des Verstärkungslernens zur Lösung von Problemen im kontinuierlichen Aktionsraum fort. In diesem Artikel werde ich den Soft Actor-Critic (SAC) Algorithmus vorstellen. Der Hauptvorteil von SAC ist die Fähigkeit, optimale Strategien zu finden, die nicht nur die erwartete Belohnung maximieren, sondern auch eine maximale Entropie (Vielfalt) von Aktionen aufweisen.
preview
Neuronale Netze leicht gemacht (Teil 48): Methoden zur Verringerung der Überschätzung von Q-Funktionswerten

Neuronale Netze leicht gemacht (Teil 48): Methoden zur Verringerung der Überschätzung von Q-Funktionswerten

Im vorigen Artikel haben wir die DDPG-Methode vorgestellt, mit der Modelle in einem kontinuierlichen Aktionsraum trainiert werden können. Wie andere Q-Learning-Methoden neigt jedoch auch DDPG dazu, die Werte der Q-Funktion zu überschätzen. Dieses Problem führt häufig dazu, dass ein Agent mit einer suboptimalen Strategie ausgebildet wird. In diesem Artikel werden wir uns einige Ansätze zur Überwindung des genannten Problems ansehen.
preview
Neuronale Netze leicht gemacht (Teil 47): Kontinuierlicher Aktionsraum

Neuronale Netze leicht gemacht (Teil 47): Kontinuierlicher Aktionsraum

In diesem Artikel erweitern wir das Aufgabenspektrum unseres Agenten. Der Ausbildungsprozess wird einige Aspekte des Geld- und Risikomanagements umfassen, die ein wesentlicher Bestandteil jeder Handelsstrategie sind.
preview
Neuronale Netze leicht gemacht (Teil 46): Goal-conditioned reinforcement learning (GCRL, zielgerichtetes Verstärkungslernen)

Neuronale Netze leicht gemacht (Teil 46): Goal-conditioned reinforcement learning (GCRL, zielgerichtetes Verstärkungslernen)

In diesem Artikel werfen wir einen Blick auf einen weiteren Ansatz des Reinforcement Learning. Es wird als Goal-conditioned reinforcement learning (GCRL, zielgerichtetes Verstärkungslernen) bezeichnet. Bei diesem Ansatz wird ein Agent darauf trainiert, verschiedene Ziele in bestimmten Szenarien zu erreichen.
preview
Neuronale Netze leicht gemacht (Teil 45): Training von Fertigkeiten zur Erkundung des Zustands

Neuronale Netze leicht gemacht (Teil 45): Training von Fertigkeiten zur Erkundung des Zustands

Das Training nützlicher Fertigkeiten ohne explizite Belohnungsfunktion ist eine der größten Herausforderungen beim hierarchischen Verstärkungslernen. Zuvor haben wir bereits zwei Algorithmen zur Lösung dieses Problems kennengelernt. Die Frage nach der Vollständigkeit der Umweltforschung bleibt jedoch offen. In diesem Artikel wird ein anderer Ansatz für das Training von Fertigkeiten vorgestellt, dessen Anwendung direkt vom aktuellen Zustand des Systems abhängt.
preview
Neuronale Netze leicht gemacht (Teil 44): Erlernen von Fertigkeiten mit Blick auf die Dynamik

Neuronale Netze leicht gemacht (Teil 44): Erlernen von Fertigkeiten mit Blick auf die Dynamik

Im vorangegangenen Artikel haben wir die DIAYN-Methode vorgestellt, die einen Algorithmus zum Erlernen einer Vielzahl von Fertigkeiten (skills) bietet. Die erworbenen Fertigkeiten können für verschiedene Aufgaben genutzt werden. Aber solche Fertigkeiten können ziemlich unberechenbar sein, was ihre Anwendung schwierig machen kann. In diesem Artikel wird ein Algorithmus zum Erlernen vorhersehbarer Fertigkeiten vorgestellt.
preview
Neuronale Netze leicht gemacht (Teil 43): Beherrschen von Fähigkeiten ohne Belohnungsfunktion

Neuronale Netze leicht gemacht (Teil 43): Beherrschen von Fähigkeiten ohne Belohnungsfunktion

Das Problem des Verstärkungslernens liegt in der Notwendigkeit, eine Belohnungsfunktion zu definieren. Sie kann komplex oder schwer zu formalisieren sein. Um dieses Problem zu lösen, werden aktivitäts- und umweltbasierte Ansätze zum Erlernen von Fähigkeiten ohne explizite Belohnungsfunktion erforscht.
preview
Neuronale Netze leicht gemacht (Teil 42): Modell der Prokrastination, Ursachen und Lösungen

Neuronale Netze leicht gemacht (Teil 42): Modell der Prokrastination, Ursachen und Lösungen

Im Kontext des Verstärkungslernens kann die Prokrastination (Zögern) eines Modells mehrere Ursachen haben. Der Artikel befasst sich mit einigen der möglichen Ursachen für Prokrastination bei Modellen und mit Methoden zu deren Überwindung.
preview
Neuronale Netze leicht gemacht (Teil 41): Hierarchische Modelle

Neuronale Netze leicht gemacht (Teil 41): Hierarchische Modelle

Der Artikel beschreibt hierarchische Trainingsmodelle, die einen effektiven Ansatz für die Lösung komplexer maschineller Lernprobleme bieten. Hierarchische Modelle bestehen aus mehreren Ebenen, von denen jede für verschiedene Aspekte der Aufgabe zuständig ist.
preview
Neuronale Netze leicht gemacht (Teil 40): Verwendung von Go-Explore bei großen Datenmengen

Neuronale Netze leicht gemacht (Teil 40): Verwendung von Go-Explore bei großen Datenmengen

In diesem Artikel wird die Verwendung des Go-Explore-Algorithmus über einen langen Trainingszeitraum erörtert, da die Strategie der zufälligen Aktionsauswahl mit zunehmender Trainingszeit möglicherweise nicht zu einem profitablen Durchgang führt.
preview
Neuronale Netze leicht gemacht (Teil 39): Go-Explore, ein anderer Ansatz zur Erkundung

Neuronale Netze leicht gemacht (Teil 39): Go-Explore, ein anderer Ansatz zur Erkundung

Wir setzen die Untersuchung der Umgebung in Modellen des verstärkten Lernens fort. Und in diesem Artikel werden wir uns einen weiteren Algorithmus ansehen – Go-Explore. Er ermöglicht es Ihnen, die Umgebung in der Phase der Modellbildung effektiv zu erkunden.
preview
Tests von verschiedenen gleitenden Durchschnitten, um zu sehen, wie aufschlussreich sie sind

Tests von verschiedenen gleitenden Durchschnitten, um zu sehen, wie aufschlussreich sie sind

Wir alle wissen, wie wichtig der Indikator des gleitenden Durchschnitts für viele Händler ist. Es gibt noch andere Arten von gleitenden Durchschnitten, die für den Handel nützlich sein können. Wir werden diese Arten in diesem Artikel identifizieren und einen einfachen Vergleich zwischen jeder von ihnen und dem beliebtesten einfachen gleitenden Durchschnitt anstellen, um zu sehen, welcher die besten Ergebnisse liefern kann.
preview
Kategorientheorie in MQL5 (Teil 17): Funktoren und Monoide

Kategorientheorie in MQL5 (Teil 17): Funktoren und Monoide

Dieser Artikel, der letzte in unserer Reihe zum Thema Funktoren, befasst sich erneut mit Monoiden als Kategorie. Monoide, die wir in dieser Serie bereits vorgestellt haben, werden hier zusammen mit mehrschichtigen Perceptrons zur Unterstützung der Positionsbestimmung verwendet.
preview
Neuronale Netze leicht gemacht (Teil 38): Selbstüberwachte Erkundung bei Unstimmigkeit (Self-Supervised Exploration via Disagreement)

Neuronale Netze leicht gemacht (Teil 38): Selbstüberwachte Erkundung bei Unstimmigkeit (Self-Supervised Exploration via Disagreement)

Eines der Hauptprobleme beim Verstärkungslernen ist die Erkundung der Umgebung. Zuvor haben wir bereits die Forschungsmethode auf der Grundlage der intrinsischen Neugier kennengelernt. Heute schlage ich vor, einen anderen Algorithmus zu betrachten: Erkundung bei Unstimmigkeit.
preview
Verbessern Sie Ihre Handelscharts mit interaktiven GUI's in MQL5 (Teil III): Ein einfaches, bewegliches Handels-GUI

Verbessern Sie Ihre Handelscharts mit interaktiven GUI's in MQL5 (Teil III): Ein einfaches, bewegliches Handels-GUI

Begleiten Sie uns in Teil III der Serie „Verbessern Sie Ihre Handelscharts mit interaktiven GUIs in MQL5“, wenn wir die Integration interaktiver GUIs in bewegliche Handels-Dashboards in MQL5 untersuchen. Dieser Artikel baut auf den Grundlagen von Teil I und II auf und leitet die Leser an, statische Handels-Dashboards in dynamische, bewegliche Dashboards umzuwandeln.
preview
Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 1): Indikatorsignale basierend auf ADX in Kombination mit Parabolic SAR

Wie man einen einfachen Multi-Currency Expert Advisor mit MQL5 erstellt (Teil 1): Indikatorsignale basierend auf ADX in Kombination mit Parabolic SAR

Der Multi-Currency Expert Advisor in diesem Artikel ist ein Expert Advisor oder Handelsroboter, der mit mehr als einem Symbolpaar aus einem Symbolchart handeln kann (Positionen öffnen, schließen und verwalten).
preview
Neuronale Netze leicht gemacht (Teil 37): Sparse Attention (Verringerte Aufmerksamkeit)

Neuronale Netze leicht gemacht (Teil 37): Sparse Attention (Verringerte Aufmerksamkeit)

Im vorigen Artikel haben wir relationale Modelle erörtert, die in ihrer Architektur Aufmerksamkeitsmechanismen verwenden. Eines der besonderen Merkmale dieser Modelle ist die intensive Nutzung von Computerressourcen. In diesem Artikel wird einer der Mechanismen zur Verringerung der Anzahl von Rechenoperationen innerhalb des Self-Attention-Blocks betrachtet. Dadurch wird die allgemeine Leistung des Modells erhöht.
preview
Alles, was Sie über die MQL5-Programmstruktur wissen müssen

Alles, was Sie über die MQL5-Programmstruktur wissen müssen

Jedes Programm in jeder Programmiersprache hat eine bestimmte Struktur. In diesem Artikel lernen Sie wesentliche Teile der MQL5-Programmstruktur kennen, indem Sie die Programmiergrundlagen jedes Teils der MQL5-Programmstruktur verstehen, die bei der Erstellung unseres MQL5-Handelssystems oder -Handelswerkzeugs, das im MetaTrader 5 ausführbar ist, sehr hilfreich sein können.
preview
Die Handelstechnik RSI Deep Three Move

Die Handelstechnik RSI Deep Three Move

Vorstellung der Handelstechnik RSI Deep Three Move für MetaTrader 5. Dieser Artikel basiert auf einer neuen Reihe von Studien, die einige Handelstechniken auf der Grundlage des RSI aufzeigen. Der RSI ist ein Indikator der technischen Analyse, der zur Messung der Stärke und Dynamik eines Wertpapiers, z. B. einer Aktie, einer Währung oder eines Rohstoffs, verwendet wird.
preview
Die ChatGPT-Funktionen von OpenAI im Rahmen der MQL4- und MQL5-Entwicklung

Die ChatGPT-Funktionen von OpenAI im Rahmen der MQL4- und MQL5-Entwicklung

In diesem Artikel werden wir uns mit ChatGPT von OpenAI beschäftigen, um zu verstehen, welche Möglichkeiten es bietet, den Zeit- und Arbeitsaufwand für die Entwicklung von Expert Advisors, Indikatoren und Skripten zu reduzieren. Ich werde Sie schnell durch diese Technologie führen und versuchen, Ihnen zu zeigen, wie Sie sie für die Programmierung in MQL4 und MQL5 richtig einsetzen.
preview
Entwicklung eines MQTT-Clients für MetaTrader 5: ein TDD-Ansatz

Entwicklung eines MQTT-Clients für MetaTrader 5: ein TDD-Ansatz

Dieser Artikel berichtet über die ersten Versuche bei der Entwicklung eines nativen MQTT-Clients für MQL5. MQTT ist ein Client-Server-Publish/Subscribe-Messaging-Transportprotokoll. Es ist leichtgewichtig, offen, einfach und so konzipiert, dass sie leicht zu implementieren ist. Diese Eigenschaften machen es ideal für den Einsatz in vielen Situationen.
preview
Verbessern Sie Ihre Handelscharts durch interaktiven GUI's in MQL5 (Teil II): Ein bewegliches GUI (II)

Verbessern Sie Ihre Handelscharts durch interaktiven GUI's in MQL5 (Teil II): Ein bewegliches GUI (II)

Erschließen Sie das Potenzial der dynamischen Datendarstellung in Ihren Handelsstrategien und Dienstprogrammen mit unserer ausführlichen Anleitung zur Erstellung beweglicher GUIs in MQL5. Tauchen Sie ein in die grundlegenden Prinzipien der objektorientierten Programmierung und entdecken Sie, wie Sie mit Leichtigkeit und Effizienz einzelne oder mehrere bewegliche GUIs auf demselben Diagramm entwerfen und implementieren können.
preview
Mean Reversion, eine einfache Handelsstrategie

Mean Reversion, eine einfache Handelsstrategie

Mean Reversion ist eine Form des entgegengesetzten Handels, bei der der Händler erwartet, dass der Kurs zu einer Art Gleichgewicht zurückkehrt, das im Allgemeinen durch einen Mittelwert oder eine andere Statistik der zentralen Tendenz gemessen wird.
preview
Das Erstellen von grafischen Panels ist mit MQL5 einfach geworden

Das Erstellen von grafischen Panels ist mit MQL5 einfach geworden

In diesem Artikel bieten wir eine einfache und leicht verständliche Anleitung für jeden, der eines der wertvollsten und hilfreichsten Werkzeuge im Handel erstellen muss, nämlich das grafische Panel zur Vereinfachung und Erleichterung von Aufgaben rund um den Handel, das dabei hilft, Zeit zu sparen und sich ohne Ablenkungen mehr auf den eigentlichen Handelsprozess zu konzentrieren.
preview
Verstehen der MQL5 Objektorientierte Programmierung (OOP)

Verstehen der MQL5 Objektorientierte Programmierung (OOP)

Als Entwickler müssen wir lernen, Software zu erstellen und zu entwickeln, die wiederverwendbar und flexibel ist, ohne dass Code dupliziert wird, vor allem, wenn wir verschiedene Objekte mit unterschiedlichen Verhaltensweisen haben. Dies kann durch die Verwendung objektorientierter Programmiertechniken und -prinzipien reibungslos erfolgen. In diesem Artikel werden wir die Grundlagen der objektorientierten Programmierung von MQL5 vorstellen, um zu verstehen, wie wir die Prinzipien und Praktiken dieses wichtigen Themas in unserer Software nutzen können.
preview
Handelsstrategie auf der Grundlage des verbesserten Indikators zur Erkennung des Kerzenmusters von Doji

Handelsstrategie auf der Grundlage des verbesserten Indikators zur Erkennung des Kerzenmusters von Doji

Der Metabar-Indikator erkennt mehr Kerzen als der herkömmliche Indikator. Prüfen wir, ob dies einen echten Nutzen für den automatisierten Handel bringt.
preview
Verstehen von Funktionen in MQL5 mit Anwendungen

Verstehen von Funktionen in MQL5 mit Anwendungen

Funktionen sind in jeder Programmiersprache von entscheidender Bedeutung. Sie helfen Entwicklern, das DRY-Konzept anzuwenden, was bedeutet, sich nicht zu wiederholen, und bieten viele weitere Vorteile. In diesem Artikel finden Sie viele weitere Informationen über Funktionen und wie wir unsere eigenen Funktionen in MQL5 mit einfachen Anwendungen erstellen können, die in jedem System, das Sie haben, verwendet oder aufgerufen werden können, um Ihr Handelssystem zu bereichern, ohne die Dinge zu komplizieren.
preview
Kann Heiken-Ashi in Kombination mit gleitenden Durchschnitten gute Signale liefern?

Kann Heiken-Ashi in Kombination mit gleitenden Durchschnitten gute Signale liefern?

Kombinationen von Strategien können bessere Chancen bieten. Wir können Indikatoren oder Muster miteinander kombinieren, oder noch besser, Indikatoren mit Mustern, sodass wir einen zusätzlichen Bestätigungsfaktor erhalten. Gleitende Durchschnitte helfen uns, den Trend zu bestätigen und zu verfolgen. Sie sind die bekanntesten technischen Indikatoren, und das liegt an ihrer Einfachheit und ihrer erwiesenen Fähigkeit, einen Mehrwert für Analysen zu schaffen.
preview
Die Wiederaufnahme einer alten Trendhandelsstrategie: Zwei Stochastik-Oszillatoren, ein MA und Fibonacci

Die Wiederaufnahme einer alten Trendhandelsstrategie: Zwei Stochastik-Oszillatoren, ein MA und Fibonacci

Eine alte Handelsstrategie. In diesem Artikel wird eine der Strategien vorgestellt, mit denen sich der Trend auf rein technische Weise verfolgen lässt. Die Strategie ist rein technisch und verwendet einige technische Indikatoren und Werkzeuge, um Signale und Ziele zu liefern. Die Komponenten der Strategie sind wie folgt: Ein stochastischer Oszillator mit 14 Perioden. Ein 5-Perioden-Stochastik-Oszillator. Ein gleitender 200-Perioden-Durchschnitt. Ein Werkzeug zur Fibonacci-Projektion (für die Festlegung von Zielen).
preview
Prognose mit ARIMA-Modellen in MQL5

Prognose mit ARIMA-Modellen in MQL5

In diesem Artikel setzen wir die Entwicklung der CArima-Klasse zur Erstellung von ARIMA-Modellen fort, indem wir intuitive Methoden hinzufügen, die Vorhersagen ermöglichen.
preview
Verbessern Sie Ihre Handelscharts mit interaktiven GUIs in MQL5 (Teil I): Ein bewegliches GUI (I)

Verbessern Sie Ihre Handelscharts mit interaktiven GUIs in MQL5 (Teil I): Ein bewegliches GUI (I)

Entfesseln Sie die Macht der dynamischen Datendarstellung in Ihren Handelsstrategien oder Dienstprogrammen mit unserem umfassenden Leitfaden zur Erstellung beweglicher GUIs in MQL5. Tauchen Sie ein in das Kernkonzept von Chartereignissen und lernen Sie, wie Sie einfache und mehrfach bewegliche GUI auf demselben Chart entwerfen und implementieren. Dieser Artikel befasst sich auch mit dem Hinzufügen von Elementen zu Ihrer grafischen Nutzeroberfläche, um deren Funktionsweise und Ästhetik zu verbessern.
preview
Wie man einen nutzerdefinierten Donchian Channel Indikator mit MQL5 erstellt

Wie man einen nutzerdefinierten Donchian Channel Indikator mit MQL5 erstellt

Es gibt viele technische Hilfsmittel, die zur Visualisierung eines die Kurse umgebenden Kanals verwendet werden können. Eines dieser Hilfsmittel ist der Donchian Channel Indikator. In diesem Artikel erfahren Sie, wie Sie den Donchian Channel Indikator erstellen und wie Sie ihn als nutzerdefinierten Indikator mit EA handeln können.
preview
Datenwissenschaft und maschinelles Lernen (Teil 14): Mit Kohonenkarten den Weg in den Märkten finden

Datenwissenschaft und maschinelles Lernen (Teil 14): Mit Kohonenkarten den Weg in den Märkten finden

Sind Sie auf der Suche nach einem innovativen Ansatz für den Handel, der Ihnen hilft, sich auf den komplexen und sich ständig verändernden Märkten zurechtzufinden? Kohonenkarten (Kohonen maps), eine innovative Form künstlicher neuronaler Netze, können Ihnen helfen, verborgene Muster und Trends in Marktdaten aufzudecken. In diesem Artikel werden wir untersuchen, wie Kohonenkarten funktionieren und wie sie zur Entwicklung intelligenter und effektiverer Handelsstrategien genutzt werden können. Egal, ob Sie ein erfahrener Trader sind oder gerade erst anfangen, Sie werden diesen aufregenden neuen Ansatz für den Handel nicht verpassen wollen.