DoEasy 函数库中的图形(第七十六部分):会话窗对象和预定义的颜色主题
在本文中,我所述的概念将涵盖构建各种函数库 GUI 设计主题,创建会话窗对象,它是图形元素类对象的衍生后代,并为创建函数库图形对象的阴影准备数据,以及进一步开发功能。
DoEasy 函数库中的图形(第七十五部分):处理基本图形元素图元和文本的方法
在本文中,我将继续开发由 CCanvas 标准库类提供强力支持的所有函数库图形对象的基准图形元素类。 我将创建绘制图元和在图形元素对象上显示文本的方法。
DoEasy 函数库中的图形(第七十四部分):由 CCanvas 类提供强力支持的基本图形元素
在本文中,我将重修上一篇文章中构建的图形对象概念,并准备由标准库 CCanvas 类提供强力支持的函数库所有图形对象的基类。
DoEasy 函数库中的图形(第七十三部分):图形元素的交互窗对象
这篇文章开辟了函数库一个新的操控图形的大章节。 在本文中,我将创建鼠标状态对象、所有图形元素的基准对象、以及函数库图形元素的交互窗对象类。
DoEasy 库中的其他类(第七十二部分):跟踪并记录集合中的图表对象参数
在本文中,我将完成图表对象类及其集合的操控。 我还将实现图表属性及其窗口变化的自动跟踪,以及把新参数保存到对象属性。 如此修订允许在未来实现整个图表集合的事件功能。
DoEasy 库中的其他类(第六十九部分):图表对象集合类
在本文里,我启动图表对象集合类的开发。 该类存储图表对象及其子窗口和指标的集合列表,从而提供操控任何选定图表及其子窗口的能力,亦或同时处理多个图表列表。
DoEasy 库中的其他类(第六十七部分):图表对象类
在本文中,我将创建图表对象类(单个交易金融产品图表),并改进 MQL5 信号对象的集合类,以便在更新列表时也能为存储在集合中的每个信号对象更新其所有参数。
DoEasy 函数库中的其他类(第六十六部分):MQL5.com 信号集合类
在本文中,我将针对 MQL5.com 信号服务创建信号集合类,拥有能够管理信号的函数。 此外,我将改进“市场深度”快照对象类,来显示 DOM 的总买卖量。
实用且奇特的自动交易技术
在本文中,我将演示一些非常有趣且实用的自动交易技术。 其中一些可能您很熟悉。 我将尝试覆盖最有趣的方法,并解释为什么它们值得使用。 此外,我将展示这些技术在实战中的适用性。 我们将创建智能交易系统,并依据历史报价来测试全部所述技术。
神经网络变得轻松(第十一部分):自 GPT 获取
也许,GPT-3 是目前已有语言类神经网络中最先进的模型之一,它的最大变体可包含 1750 亿个参数。 当然,我们不打算在家用 PC 上创建如此庞然之物。 然而,我们可以看看在我们的操作中能够采用哪种体系解决方案,以及如何从中受益。
DoEasy 函数库中的价格(第六十二部分):实时更新即时报价序列,为操控市场深度做准备
在本文中,我将实现即时报价数据的实时更新,并为操控市场深度的品种对象类(DOM 本身将在下一篇文章中实现)做准备。
自适应算法(第三部分): 放弃优化
如果采用基于历史数据的优化方法来选择参数,就不可能得到真正稳定的算法。一个稳定的算法应该知道在任何时候操作任何交易工具时需要哪些参数。它不应该预测或猜测,它应该确定知道。
神经网络变得轻松(第十部分):多目击者关注
我们以前曾研究过神经网络中的自关注机制。 在实践中,现代神经网络体系结构会采用多个并行的自关注线程来查找序列元素之间的各种依存关系。 我们来研究这种方法的实现,并评估其对整体网络性能的影响。
神经网络在交易中的实际应用 (第二部分). 计算机视觉
利用计算机视觉可以训练神经网络对价格图表和指标的直观表示。这种方法可以对整个复杂的技术指标进行更广泛的操作,因为不需要将它们以数字形式输入神经网络。
开发自适应算法 (第二部分): 提高效率
在本文中,我将通过改进先前创建的算法的灵活性来继续本主题的开发。随着分析窗口中烛形数量的增加,或烛形超额阈值百分比的增加,算法变得更加稳定。我不得不做出妥协,并设置一个更大的样本量进行分析或更大的烛形超额百分比。
DoEasy 函数库中的时间序列(第五十八部分):指标缓冲区数据的时间序列
关于操控时间序列的主题总结,诸如组织存储、针对存储在指标缓冲区中的数据进行搜索和分类,如此即可在程序里利用函数库创建指标值,并进一步据其执行分析。 函数库的所有集合类的一般概念,能够轻松地在相应的集合中找到必要的数据。 在今天创建的类中,也可分别完成同样功能。
开发自适应算法(第一部分):寻找基本模式
在接下来的系列文章中,我将演示探讨大多数市场因素的自适应算法的开发,以及如何将这些情况系统化,用逻辑描述它们,并在您的交易活动中应用它们。我将从一个非常简单的算法开始,这个算法将逐渐获得理论,并发展成一个非常复杂的项目。
神经网络变得轻松(第八部分):关注机制
在之前的文章中,我们已经测试了组织规划神经网络的各种选项。 我们还研究了自图像处理算法中借鉴而来的卷积网络。 在本文中,我建议研究关注机制,它的出现为开发语言模型提供了动力。
DoEasy 函数库中的时间序列(第五十七部分):指标缓冲区数据对象
在本文中,开发一个对象,其中包含一个指标的一个缓冲区的所有数据。 这些对象对于存储指标缓冲区的数据序列将是必需的。 在其的辅助下,才有可能对任何指标的缓冲区数据,以及其他类似数据进行排序和比较。
DoEasy 函数库中的时间序列(第五十六部分):自定义指标对象,从集合中的指标对象获取数据
本文研究在 EA 中创建自定义指标对象。 我们稍微改进一下库类,并添加一些方法,以便从 EA 中的指标对象获取数据。
神经网络变得轻松(第七部分):自适应优化方法
在之前的文章中,我们利用随机梯度下降法针对网络中的所有神经元按照相同的学习率训练神经网络。 在本文中,我提议着眼于自适应学习方法,该方法能够改变每个神经元的学习率。 我们还将研究这种方法的利弊。
无需 Python 或 R 语言知识的 Yandex CatBoost 机器学习算法
本文通过一个具体的例子提供了机器学习过程的主要阶段的代码和描述。您不需要 Python 或 R 语言知识就能够获得模型。此外,基本的MQL5知识已经足够了- 这正是我的水平。因此,我希望这篇文章能为广大读者提供一个很好的指导,帮助那些对评估机器学习能力感兴趣的人,并在他们的课程中实现这些能力。
神经网络变得轻松(第六部分):神经网络学习率实验
我们之前已研究过各种类型的神经网络及其实现。 在所有情况下,训练神经网络时都使用梯度下降法,为此我们需要选择学习率。 在本文中,我打算通过示例展示正确选择学习率的重要性,及其对神经网络训练的影响。
神经网络变得轻松(第五部分):OpenCL 中的多线程计算
我们早前已经讨论过某些类型的神经网络实现。 在所研究的网络中,每个神经元都重复相同的操作。 逻辑上进一步应利用现代技术提供的多线程计算功能来加快神经网络学习过程。 本文介绍了一种可能的实现方式。
神经网络变得轻松(第四部分):循环网络
我们继续研究神经网络的世界。 在本文中,我们将研究另一种类型的神经网络,循环网络。 此类型建议与时间序列配合使用,其在 MetaTrader 5 交易平台中由价格图表呈现。
并行粒子群优化
本文介绍了一种基于粒子群算法的快速优化方法。本文还介绍了MQL中的方法实现,它既可以在EA交易内部的单线程模式下使用,也可以作为在本地测试人员代理上运行的附加组件在并行多线程模式下使用。