MQL5 编程示例的文章

icon

访问海量文章以及代码实例集合,演示如何使用 MQL5 语言 为 MetaTrader 平台创建指标和交易机器人。源代码已附加在文章之中,因此您可以在 MetaEditor 中打开并运行它们,看看应用程序如何工作。

这些文章对那些刚开始探索自动交易的人,以及具有编程经验的职业交易员都极其有用。它们的特色不仅是例子,而且也蕴含着新的想法。

添加一个新的文章
最近 | 最佳
preview
头脑风暴优化算法(第一部分):聚类

头脑风暴优化算法(第一部分):聚类

在本文中,我们将探讨一种受自然现象“头脑风暴”启发的新型优化方法——头脑风暴优化(Brain Storm Optimization,简称BSO)。我们还将讨论BSO方法所应用的一种解决多模态优化问题的新方法。该方法能够在无需预先确定子种群数量的情况下,找到多个最优解。此外,我们还会考虑K-Means和K-Means++聚类方法。
preview
种群优化算法:鸟群算法(BSA)

种群优化算法:鸟群算法(BSA)

本文探讨了受自然界鸟类集群行为启发而产生的基于鸟群的算法(BSA)。BSA中的个体采用不同的搜索策略,包括在飞行、警戒和觅食行为之间的切换,使得该算法具有多面性。它利用鸟类集群、交流、适应性、领导与跟随等规则来高效地找到最优解。
preview
在MQL5中构建自适应的自动化交易系统(EA)

在MQL5中构建自适应的自动化交易系统(EA)

建立前瞻性的EA,并根据任何市场进行调整。
preview
让新闻交易变得容易(第一部分):创建一个数据库

让新闻交易变得容易(第一部分):创建一个数据库

新闻交易可能很复杂,令人难以招架,在本文中我们将介绍获取新闻数据的步骤。此外,我们还将了解MQL5经济数据日历及其提供的功能。
preview
使用 LSTM 神经网络创建时间序列预测:规范化价格和令牌化时间

使用 LSTM 神经网络创建时间序列预测:规范化价格和令牌化时间

本文概述了一种使用每日范围对市场数据进行归一化并训练神经网络以增强市场预测的简单策略。开发的模型可以与现有的技术分析框架结合使用,也可以单独使用,以帮助预测整体市场方向。任何技术分析师都可以进一步完善本文中概述的框架,以开发适用于手动和自动交易策略的模型。
preview
种群优化算法:Boids(虚拟生物)算法

种群优化算法:Boids(虚拟生物)算法

本文基于动物集群行为的独特实例,说明Boids算法。反过来说,Boids算法又成为了一整类算法的基础,这类算法统称为“种群智能”。
preview
群体算法的混合 -顺序结构和并行结构

群体算法的混合 -顺序结构和并行结构

在这里,我们将深入探讨优化算法混合的三个主要类型:策略混合、顺序混合和并行混合。我们将结合并测试相关的优化算法进行一系列实验。
preview
种群优化算法:二进制遗传算法(BGA)。第 II 部分

种群优化算法:二进制遗传算法(BGA)。第 II 部分

在本文中,我们将继续研究二进制遗传算法(BGA),它模拟自然界生物遗传物质中发生的自然过程。
preview
如何利用 MQL5 创建简单的多币种智能交易系统(第 6 部分):两条 RSI 指标相互交叉

如何利用 MQL5 创建简单的多币种智能交易系统(第 6 部分):两条 RSI 指标相互交叉

本文中的多货币智能系统是一款智能交易系统或交易机器人,它利用两条 RSI 指标线的交叉,即与慢速 RSI 与快速 RSI 两线相交。
preview
数据分组处理方法:在MQL5中实现多层迭代算法。

数据分组处理方法:在MQL5中实现多层迭代算法。

在本文中,我们介绍如何在MQL5中实现分组数据处理方法中的多层迭代算法。
preview
DoEasy.服务功能(第 1 部分):价格形态

DoEasy.服务功能(第 1 部分):价格形态

在本文中,我们将开始开发使用时间序列数据搜索价格形态的方法。一种形态有一组参数,对任何类型的形态都是通用的。所有此类数据都将集中在基础抽象形态的对象类中。在本文中,我们将创建一个抽象形态类和一个 Pin Bar 形态类。
preview
在市场中获得优势

在市场中获得优势

学习如何在你希望交易的市场中占据先机,无论你目前的交易水平如何。
preview
手动交易的风险管理

手动交易的风险管理

在本文中,我们将详细探讨如何从头编写手动交易的风险管理类。这个类也可以被用作自动化程序的算法交易者继承的基类。
preview
种群优化算法:二进制遗传算法(BGA)。第 I 部分

种群优化算法:二进制遗传算法(BGA)。第 I 部分

在本文中,我们将探讨二进制遗传和其它种群算法中所用的各种方法。我们将见识到算法的主要组成部分,例如选择、交叠和突变,以及它们对优化的影响。此外,我们还将研究数据表示方法,及其对优化结果的影响。
preview
开发回放系统(第 43 部分):Chart Trade 项目(II)

开发回放系统(第 43 部分):Chart Trade 项目(II)

大多数想要或梦想学习编程的人实际上并不知道自己在做什么。他们的活动包括试图以某种方式创造事物。然而,编程并不是为了定制合适的解决方案。这样做会产生更多的问题而不是解决方案。在这里,我们将做一些更高级、更与众不同的事情。
preview
交易者基于角度的操作

交易者基于角度的操作

本文将介绍基于角度的操作。我们将研究构建角度和在交易中使用角度的方法。
preview
种群优化算法:微人工免疫系统(Micro-AIS)

种群优化算法:微人工免疫系统(Micro-AIS)

本文研究一种基于人体免疫系统原理的优化方法 — 微人工免疫系统(Micro-AIS) - AIS 的修订版。Micro-AIS 使用更简单的免疫系统模型,和更简单的免疫信息处理操作。本文还讨论了 Micro-AIS 与传统 AIS 相比的优缺点。
preview
同时交易多种工具时平衡风险

同时交易多种工具时平衡风险

本文将帮助初学者从头开始编写一个脚本的实现,用于在同时交易多种工具时平衡风险。此外,它还可以为有经验的用户提供新的思路,使他们可以根据本文提出的方案来实现自己的解决方案。
preview
种群优化算法:细菌觅食优化 — 遗传算法(BFO-GA)

种群优化算法:细菌觅食优化 — 遗传算法(BFO-GA)

本文释义了一种解决优化问题的新方式,即把细菌觅食优化(BFO)算法和遗传算法(GA)中所用的技术结合到混合型 BFO-GA 算法当中。它用细菌群落来全局搜索最优解,并用遗传运算器来优调局部最优值。与原始的 BFO 不同,细菌现在可以突变,并继承基因。
preview
GIT:它是什么?

GIT:它是什么?

在本文中,我将为开发人员介绍一个非常重要的工具。如果您不熟悉 GIT,请阅读本文,以了解它是什么以及如何在 MQL5 中使用它。
preview
交易中的追踪止损

交易中的追踪止损

在本文中,我们将研究追踪止损在交易中的使用。我们将评估它的实用性和有效性以及如何使用它。追踪止损的效率很大程度上取决于价格波动和止损水平的选择。可以使用各种方法来设置止损。
preview
多交易品种多周期指标中的 DRAW_ARROW 绘图类型

多交易品种多周期指标中的 DRAW_ARROW 绘图类型

本文将介绍如何绘制多交易品种多周期的箭头指标。我们还将改进类方法,以便正确显示箭头指标的数据,这些数据是根据与当前图表交易品种/周期不一致的交易品种/周期计算的。
preview
开发回放系统(第 41 部分):启动第二阶段(二)

开发回放系统(第 41 部分):启动第二阶段(二)

如果到目前为止,你觉得一切都很好,那就说明你在开始开发应用程序时,并没有真正考虑到长远的问题。随着时间的推移,你将不再需要为新的应用程序编程,只需让它们协同工作即可。让我们看看如何完成鼠标指标的组装。
preview
开发回放系统(第 38 部分):铺路(II)

开发回放系统(第 38 部分):铺路(II)

许多认为自己是 MQL5 程序员的人,其实并不具备我在本文中将要概述的基础知识。许多人认为 MQL5 是一个有限的工具,但实际原因是他们尚未具备所需的知识。所以,如果您有啥不知道,不要为此感到羞愧。最好是因为不去请教而感到羞愧。简单地强制 MetaTrader 5 禁用指标重叠,并不能确保指标和智能系统之间的双向通信。我们离这个目标还很远,但指标在图表上没有重叠的事实给了我们一些信心。
preview
种群优化算法:改变概率分布的形状和位移,并基于智能头足类生物(SC)进行测试

种群优化算法:改变概率分布的形状和位移,并基于智能头足类生物(SC)进行测试

本文研究了改变概率分布形状对优化算法性能的影响。我们将进行的实验,会用到智能头足类生物(SC)测试算法,从而评估优化问题背景下各种概率分布的效能。
preview
开发具有 RestAPI 集成的 MQL5 强化学习代理(第 4 部分):在 MQL5 中组织类中的函数

开发具有 RestAPI 集成的 MQL5 强化学习代理(第 4 部分):在 MQL5 中组织类中的函数

本文讨论 MQL5 中从面向过程编码向面向对象编程 (OOP) 的过渡,重点是与 REST API 的集成。今天,我们将讨论如何将 HTTP 请求函数(GET 和 POST)组织到类中。我们将仔细研究代码重构,并展示如何用类方法替换孤立的函数。本文包含实用的示例和测试。
preview
频域中的滤波和特征提取

频域中的滤波和特征提取

在本文中,我们探索了在时间序列由数字滤波器在频域上进行表达的应用,如此即可提取也许对预测模型有用的独特特征。
preview
用于时间序列挖掘的数据标签(第 6 部分):使用 ONNX 在 EA 中应用和测试

用于时间序列挖掘的数据标签(第 6 部分):使用 ONNX 在 EA 中应用和测试

本系列文章介绍了几种时间序列标注方法,可以创建符合大多数人工智能模型的数据,根据需要进行有针对性的数据标注可以使训练好的人工智能模型更符合预期的设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!
preview
种群优化算法:进化策略,(μ,λ)-ES 和 (μ+λ)-ES

种群优化算法:进化策略,(μ,λ)-ES 和 (μ+λ)-ES

本文研究一套称为进化策略(ES)的优化算法。它们是最早使用进化原理来寻找最优解的种群算法之一。我们将针对传统的 ES 变体实现变更,并修改算法的测试函数和测试台方法。
preview
在 MQL5 中实现增广迪基–富勒检验

在 MQL5 中实现增广迪基–富勒检验

在本文中,我们演示了增广迪基–富勒(Augmented Dickey-Fuller,ADF)检验的实现,并将其应用于使用 Engle-Granger 方法进行协整检验。
preview
MQL5 简介(第 2 部分):浏览预定义变量、通用函数和控制流语句

MQL5 简介(第 2 部分):浏览预定义变量、通用函数和控制流语句

通过我们的 MQL5 系列第二部分,开启一段启迪心灵的旅程。这些文章不仅是教程,还是通往魔法世界的大门,在那里,编程新手和魔法师将团结在一起。是什么让这段旅程变得如此神奇?我们的 MQL5 系列第二部分以令人耳目一新的简洁性脱颖而出,使复杂的概念变得通俗易懂。与我们互动,我们会回答您的问题,确保您获得丰富和个性化的学习体验。让我们建立一个社区,让理解 MQL5 成为每个人的冒险。欢迎来到魔法世界!
preview
开发回放系统(第 40 部分):启动第二阶段(一)

开发回放系统(第 40 部分):启动第二阶段(一)

今天我们将讨论回放/模拟器系统的新阶段。在这个阶段,谈话才会变得真正有趣,内容也相当丰富。我强烈建议您仔细阅读本文并使用其中提供的链接。这将帮助您更好地理解内容。
preview
开发回放系统(第 39 部分):铺平道路(三)

开发回放系统(第 39 部分):铺平道路(三)

在进入开发的第二阶段之前,我们需要修正一些想法。您知道如何让 MQL5 满足您的需求吗?您是否尝试过超出文档所包含的范围?如果没有,那就做好准备吧。因为我们将做一些大多数人通常不会做的事情。
preview
理解编程范式(第 1 部分):开发价格行为智能系统的过程化方式

理解编程范式(第 1 部分):开发价格行为智能系统的过程化方式

了解编程范式及利用 MQL5 代码的应用。本文探讨了过程化编程的细节,并通过一个实际示例提供了实经验。您将学习如何利用 EMA 指标和烛条价格数据开发价格行为智能系统。额外,本文还介绍了函数化编程范式。
preview
掌握 MQL5:从入门到精通(第二部分)基本数据类型和变量的使用

掌握 MQL5:从入门到精通(第二部分)基本数据类型和变量的使用

这是初学者系列的延续。本文将介绍如何创建常量和变量、写入日期、颜色和其他有用的数据。我们将学习如何创建枚举,如一周中的天数或线条样式(实线、虚线等)。变量和表达式是编程的基础。它们肯定存在于99%以上的程序中,因此理解它们至关重要。因此,如果你是编程新手,这篇文章会对你非常有用。所需的编程知识水平:非常基础,在我上一篇文章(见开头的链接)的范围内。
preview
种群优化算法:模拟各向同性退火(SIA)算法。第 II 部分

种群优化算法:模拟各向同性退火(SIA)算法。第 II 部分

第一部分专注于众所周知、且流行的算法 — 模拟退火。我们已经通盘研究了它的利弊。本文的第二部分专注于算法的彻底变换,将其转变为一种新的优化算法 — 模拟各向同性退火(SIA)。
preview
图表上的历史仓位及其盈利/亏损图指标

图表上的历史仓位及其盈利/亏损图指标

在本文中,我将探讨根据交易历史获取已平仓头寸信息的选项。此外,我将创建一个简单的指标,以图表的形式显示每个柱形上仓位的大致盈利/亏损。
preview
多交易品种多周期指标中的颜色缓冲区

多交易品种多周期指标中的颜色缓冲区

在本文中,我们将回顾多交易品种、多周期指标中指标缓冲区的结构,并在图表上组织这些指标的彩色缓冲区的显示。
preview
开发具有 RestAPI 集成的 MQL5 强化学习代理(第 3 部分):在 MQL5 中创建自动移动和测试脚本

开发具有 RestAPI 集成的 MQL5 强化学习代理(第 3 部分):在 MQL5 中创建自动移动和测试脚本

本文讨论在 Python 中实现井字游戏中的自动移动,并与 MQL5 函数和单元测试集成。目标是通过在 MQL5 中进行测试,提高游戏的互动性并确保系统的可靠性。本文内容包括游戏逻辑开发、集成和实际测试,最后将介绍动态游戏环境和强大集成系统的创建。
preview
种群优化算法:模拟退火(SA)。第 1 部分

种群优化算法:模拟退火(SA)。第 1 部分

模拟退火算法是受到金属退火工艺启发的一种元启发式算法。在本文中,我们将对算法进行全面分析,并揭示围绕这种广为人知的优化方法的一些常见信仰和神话。本文的第二部分将研究自定义模拟各向同性退火(SIA)算法。