
Популяционные алгоритмы оптимизации: Рой частиц (PSO)
В данной статье рассмотрим популярный алгоритм "Рой Частиц" (PSO — particle swarm optimisation). Ранее мы обсудили такие важные характеристики алгоритмов оптимизации как сходимость, скорость сходимости, устойчивость, масштабируемость, разработали стенд для тестирования, рассмотрели простейший алгоритм на ГСЧ.

Нейросети — это просто (Часть 30): Генетические алгоритмы
Сегодня я хочу познакомить Вас с немного иным методом обучения. Можно сказать, что он заимствован из теории эволюции Дарвина. Наверное, он менее контролируем в сравнении с рассмотренными ранее методами. Но при этом позволяет обучать и недифференцируемые модели.

Нейросети — это просто (Часть 29): Алгоритм актор-критик с преимуществом (Advantage actor-critic)
В предыдущих статьях данной серии мы познакомились с 2-мя алгоритмами обучения с подкреплением. Каждый из них обладает своими достоинствами и недостатками. Как часто бывает в таких случаях, появляется идея совместить оба метода в некий алгоритм, который бы вобрал в себя лучшее из двух. И тем самым компенсировать недостатки каждого из них. О таком методе мы и поговорим в этой статье.

Нейросети — это просто (Часть 28): Policy gradient алгоритм
Продолжаем изучение методов обучение с подкреплением. В предыдущей статье мы познакомились с методом глубокого Q-обучения. В котором мы обучаем модель прогнозирования предстоящей награды в зависимости от совершаемого действия в конкретной ситуации. И далее совершаем действие в соответствии с нашей политикой и ожидаемой наградой. Но не всегда возможно аппроксимировать Q-функцию. Или её аппроксимация не даёт желаемого результата. В таких случаях используют методы аппроксимации не функции полезности, а на прямую политику (стратегию) действий. Именно к таким методам относится policy gradient.

Нейросети — это просто (Часть 27): Глубокое Q-обучение (DQN)
Продолжаем изучение обучения с подкреплением. И в этой статье мы познакомимся с методом глубокого Q-обучения. Использование данного метода позволило команде DeepMind создать модель, способную превзойти человека при игре в компьютерные игры Atari. Думаю, будет полезно оценить возможности подобной технологии для решения задач трейдинга.

Машинное обучение и Data Science (Часть 06): Градиентный спуск
Градиентный спуск играет важную роль в обучении нейронных сетей и различных алгоритмов машинного обучения — это быстрый и умный алгоритм. Однако несмотря на его впечатляющую работу, многие специалисты по данным все еще неправильно его понимают. Давайте в этой статье посмотрим, о чем идет речь.

Нейросети — это просто (Часть 26): Обучение с подкреплением
Продолжаем изучение методов машинного обучения. Данной статьей мы начинаем еще одну большую тему "Обучение с подкреплением". Данный подход позволяет моделям выстаивать определенные стратегии для решения поставленных задач. И мы рассчитываем, что это свойство обучения с подкреплением откроет перед нами новые горизонты построения торговых стратегий.

Нейросети — это просто (Часть 25): Практикум Transfer Learning
В последних двух статьях мы создали инструмент, позволяющий создавать и редактировать модели нейронных сетей. И теперь пришло время оценить потенциальные возможности использования технологии Transfer Learning на практических примерах.

Машинное обучение и Data Science (Часть 05): Деревья решений на примере погодных условий для игры в теннис
Деревья решений классифицируют данные, имитируя то, каким образом размышляют люди. В этой статье посмотрим, как строить деревья и использовать их для классификации и прогнозирования данных. Основная цель алгоритма деревьев решений состоит в том, чтобы разделить выборку на данные с "примесями" и на "чистые" или близкие к узлам.

Нейросети — это просто (Часть 24): Совершенствуем инструмент для Transfer Learning
В прошлой статье мы создали инструмент для создания и редактирования архитектуры нейронных сетей. И сегодня я хочу Вам предложить продолжить работу над этим инструментом. Чтобы сделать его более дружелюбным к пользователю. В чем-то это шаг в сторону от нашей темы. Но согласитесь, организация рабочего пространства играет не последнюю роль в достижении результата.

Машинное обучение и Data Science (Часть 04): Предсказание биржевого краха
В этой статье я попытаюсь использовать нашу логистическую модель, чтобы спрогнозировать крах фондового рынка на основе главнейших акций для экономики США: NETFLIX и APPLE. Мы проанализируем эти акции, будем использовать информацию о предыдущих падениях рынка 2019 и 2020 годов. Посмотрим, как наша модель будет работать в нынешних мрачных условиях.

Машинное обучение и Data Science (Часть 03): Матричная регрессия
В этот раз мы будем создавать модели с помощью матриц — они дают большую гибкость и позволяют создавать мощные модели, которые могут обрабатывать не только пять независимых переменных, но и множество других, насколько позволяют пределы вычислительных возможностей компьютера. Статья будет очень интересной, это точно.

Нейросети — это просто (Часть 23): Создаём инструмент для Transfer Learning
В данной серии статей мы уже не один раз упоминали о Transfer Learning. Но дальше упоминаний пока дело не шло. Я предлагаю заполнить этот пробел и посмотреть поближе на Transfer Learning.

Нейросети — это просто (Часть 22): Обучение без учителя рекуррентных моделей
Мы продолжаем рассмотрение алгоритмов обучения без учителя. И сейчас я предлагаю обсудить особенности использования автоэнкодеров для обучения рекуррентных моделей.

Нейросети — это просто (Часть 21): Вариационные автоэнкодеры (VAE)
В прошлой статье мы познакомились с алгоритмом работы автоэнкодера. Как и любой другой алгоритм, он имеет свои достоинства и недостатки. В оригинальной реализации автоэнкодер выполняет задачу максимально разделить объекты из обучающей выборки. А о том, как бороться с некоторыми его недостатками мы поговорим в этой статье.

Эксперименты с нейросетями (Часть 2): Хитрая оптимизация нейросети
Нейросети наше все. Проверяем на практике, так ли это. MetaTrader 5 как самодостаточное средство для использования нейросетей в трейдинге. Простое объяснение.

Нейросети — это просто (Часть 20): Автоэнкодеры
Мы продолжаем изучение алгоритмов обучения без учителя. Возможно, у читателя может возникнуть вопрос об соответствии последних публикаций теме нейронных сетей. В новой статье мы возвращаемся к использованию нейронных сетей.

Машинное обучение и Data Science (Часть 02): Логистическая регрессия
Классификация данных — важнейшая вещь для алготрейдера и программиста. В этой статье мы рассмотрим в подробностях один из классификационных логистических алгоритмов, который может помочь нам определить «да» или «нет», рост или падение, покупки или продажи.

Нейросети — это просто (Часть 19): Ассоциативные правила средствами MQL5
Продолжаем тему поиска ассоциативных правил. В предыдущей статье мы рассмотрели теоретические аспекты данного типа задач. В этой статье я продемонстрирую реализацию метода FP-Growth средствами MQL5. А также мы протестируем нашу реализацию на реальных данных.

Нейросети — это просто (Часть 18): Ассоциативные правила
В продолжение данной серии статей предлагаю познакомиться ещё с одним типом задач из методов обучения без учителя — поиск ассоциативных правил. Данный тип задач впервые был применен в ритейле для анализа корзин покупателей. О возможностях использования подобных алгоритмов в рамках трейдинга мы и поговорим в этой статье.

Метамодели в машинном обучении и трейдинге: Оригинальный тайминг торговых приказов
Метамодели в машинном обучении: Автоматическое создание торговых систем практически без участия человека — Модель сама принимает решение как торговать и когда торговать.

Эксперименты с нейросетями (Часть 1): Вспоминая геометрию
Нейросети наше все. Проверяем на практике, так ли это. Экспериментируем и используем нестандартные подходы. Пишем прибыльную торговую систему. Простое объяснение.

Нейросети — это просто (Часть 17): Понижение размерности
Мы продолжаем рассмотрение моделей искусственного интеллекта. И, в частности, алгоритмов обучения без учителя. Мы уже познакомились с одним из алгоритмов кластеризации. А в этой статье я хочу поделиться с Вами вариантом решения задач понижения размерности.

Как прокачаться в машинном обучении (Machine Learning)
Представляем вашему вниманию подборку материалов, которые будут полезны трейдеру для повышения своих знаний в алготрейдинге. Время простых алгоритмов уходит в прошлое, сейчас сложно добиться успехов без использования машинного обучения и нейронных сетей.

Нейросети — это просто (Часть 16): Практическое использование кластеризации
В предыдущей статье мы построили класс для кластеризации данных. В этой статье я хочу с вами поделиться вариантами возможного использования полученных результатов для решения практических задач трейдинга.

Машинное обучение и Data Science (Часть 01): Линейная регрессия
Пришло время нам, трейдерам, обучить наши системы и научиться самим принимать решения, основываясь на том, что показывают цифры. Не визуальным и не интуитивным путем, которым движется весь мир. Мы пойдем перпендикулярно общему направлению.

Нейросети — это просто (Часть 15): Кластеризации данных средствами MQL5
Продолжаем рассмотрение метода кластеризации. В данной статье мы создадим новый класс CKmeans для реализации одного из наиболее распространённых методов кластеризации k-средних. По результатам тестирования модель смогла выделить около 500 паттернов.

Нейросети — это просто (Часть 14): Кластеризация данных
Должен признаться, что с момента публикации последней статьи прошло уже больше года. За столь длительное время можно многое переосмыслить, выработать новые подходы. И в новой статье я хотел бы немного отойти от используемого ранее метода обучения с учителем, и предложить немного окунуться в алгоритмы обучения без учителя. И, в частности, рассмотреть один из алгоритмов кластеризации — k-средних.

Матрицы и векторы в MQL5
Специальные типы данных matrix и vector позволяют писать код, приближенный к математической записи. Это избавляет от необходимости создавать вложенные циклы и помнить о правильной индексации массивов, которые участвуют в вычислении. Таким образом повышается надежность и скорость разработки сложных программ.

Пишем глубокую нейронную сеть с нуля на языке MQL
Статья познакомит вас с глубокой нейронной сетью, написанной на MQL, и с различными функциями активации этой сети, такими как функция гиперболического тангенса для скрытых слоев и Softmax для выходного слоя. Мы будем изучать нейросеть постепенно, двигаясь от первого шага до последнего, и вместе создадим глубокую нейронную сеть.

Многослойный перцептрон и алгоритм обратного распространения ошибки (Часть II): Реализация на Python и интеграция с MQL5
Уже доступен пакет Python для разработки интеграции с MQL, что открывает двери для многих возможностей, таких как изучение данных и создание и использование моделей машинного обучения. Эта встроенная интеграция MQL5 в Python открывает для нас много возможностей, которые позволяют построить от простой линейной регрессии до моделей глубокого обучения. Давайте разберемся, как установить и подготовить среду разработки и использовать некоторые библиотеки машинного обучения.

Нейросети — это просто (Часть 13): Пакетная нормализация (Batch Normalization)
В предыдущей статье мы начали рассматривать методы повышения качества обучения нейронной сети. В данной статье предлагаю продолжить эту тему и рассмотреть такой поход, как пакетная нормализация данных.

Многослойный перцептрон и алгоритм обратного распространения ошибки
В последнее время, с ростом популярности этих двух методов появилось много библиотек на Matlab, R, Python, C ++ и т.д., которые получают на вход обучающий набор и автоматически создают соответствующую нейронную сеть для вашей задачи. Мы постараемся понять, как работает базовый тип нейронной сети — перцептрон с одним нейроном и многослойный перцептрон — замечательный алгоритм, который отвечает за обучение сети (градиентный спуск и обратное распространение). Эти сетевые модели будут основой для более сложных моделей, существующих на сегодняшний день.

Нейросети — это просто (Часть 12): Dropout
Продвигаясь дальше в изучении нейронных сетей, наверное, стоит немного уделить внимания методам повышения их сходимости при обучении. Существует несколько таких методов. В этой статье предлагаю рассмотреть один из них — Dropout.

Машинное обучение в торговых системах на сетке и мартингейле. Есть ли рыба?
Данная статья познакомит читателя с техникой машинного обучения для торговли сеткой и мартингейлом. К моему удивлению, такой подход по каким-то причинам совершенно не затронут в глобальной сети. Прочитав статью, вы сможете создавать своих собственных ботов.

Нейросети — это просто (Часть 11): Вариации на тему GPT
Сегодня, наверное, одной из самых передовых языковых моделей нейросетей является GPT-3, которая в максимальном своем варианте содержит 175 млрд. параметров. Конечно, мы не будем создавать подобного монстра в домашних условиях. Но давайте посмотрим, какие архитектурные решения мы можем использовать в своей работе и какие это нам даст преимущества.

Практическое применение нейросетей в трейдинге (Часть 2). Компьютерное зрение
Применение компьютерного зрения позволит обучать нейронные сети на визуальном представлении ценового графика и индикаторов. Данный метод позволит нам более свободно оперировать всем комплексом технических индикаторов, так как не требует их цифровой подачи в нейронную сеть.

Нейросети — это просто (Часть 10): Multi-Head Attention (многоголовое внимание)
Ранее мы уже рассмотрели механизм само-внимания (self-attention) в нейронных сетях. В практике современных архитектур нейронных сетей используется несколько параллельных потоков self-attention для поиска различных зависимостей между элементами последовательности. Давайте рассмотрим реализацию такого подхода и оценим его влияние на общий результат работы сети.

Нейросети — это просто (Часть 9): Документируем проделанную работу
Мы уже проделали довольно большой путь, и код нашей библиотеке сильно разрастается. Становится сложно отслеживать все связи и зависимости. И конечно, перед продолжением развития проекта нам нужно задокументировать уже проделанную работу и актуализировать документацию на каждом последующем шаге. Правильно подготовленная документация поможет нам увидеть целостность нашей работы.

Градиентный бустинг в задачах трансдуктивного и активного машинного обучения
В данной статье вы познакомитесь с методами активного машинного обучения на реальных данных, узнаете какие плюсы и минусы они имеют. Возможно, эти методы займут свое место в вашем арсенале моделей машинного обучения. Термин трансдукции был введен Владимиром Наумовичем Вапником, изобретателем машины опорных векторов или SVM (support vector machine).