Статьи по программированию и использованию торговых роботов на языке MQL5

icon

Эксперты, созданные для платформы MetaTrader, выполняют самые разнообразные функции, задуманные их разработчиками. Торговые роботы могут отслеживать множество финансовых инструментов 24 часа в сутки, копировать сделки, создавать и отсылать отчеты, анализировать новости и даже предоставлять трейдеру собственный графический интерфейс, разработанный по его заказу.

В статьях предлагаются приемы программирования, математические идеи по обработке данных, советы по созданию и заказу торговых роботов.

Новая статья
последние | лучшие
preview
Нейросети в трейдинге: Устойчивые торговые сигналы в любых режимах рынка (Окончание)

Нейросети в трейдинге: Устойчивые торговые сигналы в любых режимах рынка (Окончание)

В статье подробно рассмотрена интеграция подходов фреймворка ST-Expert в архитектуру Extralonger, позволяющая одновременно анализировать временные и пространственные представления данных. Представлены результаты тестирования на реальных исторических данных, демонстрирующие эффективность модели и её устойчивость к рыночным аномалиям. Описана модульная структура фреймворка, обеспечивающая воспроизводимость, гибкость для исследований и возможность поэтапной оптимизации компонентов.
preview
Как упростить ручное тестирование стратегий с помощью MQL5: строим свой набор инструментов

Как упростить ручное тестирование стратегий с помощью MQL5: строим свой набор инструментов

В этой статье разрабатываем пользовательский набор инструментов MQL5 для удобного ручного тестирования на исторических данных в Тестере стратегий. Объясним его конструкцию и реализацию, уделив особое внимание интерактивным средствам управления сделками. Затем покажем, как использовать его для эффективного тестирования стратегий
preview
Нейросети в трейдинге: Устойчивые торговые сигналы в любых режимах рынка (Модули внимания)

Нейросети в трейдинге: Устойчивые торговые сигналы в любых режимах рынка (Модули внимания)

В данной статье мы продолжаем реализацию подходов фреймворка ST-Expert, сосредотачиваясь на практических аспектах его применения средствами MQL5. Ранее мы рассмотрели теоретические основы и ключевые компоненты модели, а теперь переходим к непосредственной работе с алгоритмами графового внимания, локального и глобального распределения внимания. Основная цель текущей работы — показать, как концептуальные идеи ST-Expert превращаются в работоспособные решения для анализа и прогнозирования финансовых рядов.
preview
Нейросети в трейдинге: Устойчивые торговые сигналы в любых режимах рынка (ST-Expert)

Нейросети в трейдинге: Устойчивые торговые сигналы в любых режимах рынка (ST-Expert)

В этой статье мы познакомимся с фреймворком ST-Expert, который обеспечивает устойчивость прогнозов к рыночной неопределённости, позволяя учитывать локальные и глобальные зависимости во временных рядах. Его гибкая архитектура способствует адаптивности моделей и повышает точность предсказаний.
preview
Статистический арбитраж посредством возврата к среднему значению в парной торговле: Обыграем рынок с помощью математики

Статистический арбитраж посредством возврата к среднему значению в парной торговле: Обыграем рынок с помощью математики

Эта статья описывает фундаментальные основы статистического арбитража на уровне портфеля. Ее цель — облегчить понимание принципов статистического арбитража читателям, не обладающим глубокими математическими познаниями, и предложить отправную концептуальную конструкцию. Статья включает в себя работающего экспертного советника, некоторые заметки о его тестировании на исторических данных в пределах одного года, а также соответствующие настройки конфигурации тестирования на исторических данных (файл .ini) для воспроизведения эксперимента.
preview
От новичка до эксперта: Советник Reporting EA - Настройка рабочего процесса

От новичка до эксперта: Советник Reporting EA - Настройка рабочего процесса

Брокерские конторы часто предоставляют отчеты по торговым счетам через регулярные промежутки, основанные на заранее определенном графике. Эти фирмы, используя свои технологии API, имеют доступ к активности на вашем аккаунте и торговой истории, что позволяет им создавать отчеты о результатах работы от вашего имени. Аналогичным образом, терминал MetaTrader 5 хранит подробные записи о вашей торговой активности, которые можно использовать с помощью MQL5 для создания полностью настраиваемых отчетов и определения персонализированных способов доставки.
preview
Нейросети в трейдинге: Единый взгляд на пространство и время (Окончание)

Нейросети в трейдинге: Единый взгляд на пространство и время (Окончание)

Фреймворк Extralonger демонстрирует уникальную способность интегрировать пространственные и временные факторы в единую модель, обеспечивая высокую точность прогнозов. Его архитектура позволяет адаптироваться к разным горизонтам планирования и финансовым инструментам, сохраняя прозрачность и управляемость системы.
preview
От новичка до эксперта: Создание анимированного советника для новостей в MQL5 (VI) — Стратегия пост-новостной торговли

От новичка до эксперта: Создание анимированного советника для новостей в MQL5 (VI) — Стратегия пост-новостной торговли

В течение первой минуты после выхода важных экономических новостей риск просчета чрезвычайно высок. В течение этого короткого промежутка времени движение цены может быть неустойчивым и волатильным, что часто приводит к срабатыванию отложенных ордеров с обеих сторон. Вскоре после публикации — обычно в течение минуты — рынок, как правило, стабилизируется, возобновляя или корректируя преобладающий тренд с более типичной волатильностью. В этом разделе мы рассмотрим альтернативный подход к торговле на новостях, чтобы оценить его эффективность как ценного дополнения к инструментарию трейдера. Продолжайте читать, чтобы получить больше информации и подробностей из этого обсуждения.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 52): Осциллятор Accelerator

Возможности Мастера MQL5, которые вам нужно знать (Часть 52): Осциллятор Accelerator

Осциллятор ускорения (Accelerator Oscillator) — еще один индикатор Билла Вильямса, который отслеживает ускорение ценового импульса, а не только его темп. Хотя он во многом похож на осциллятор Awesome, который мы рассматривали в недавней статье, он стремится избежать эффектов запаздывания, концентрируясь на ускорении, а не только на скорости. Мы, как обычно, рассмотрим паттерны индикатора, а также их значение в торговле с помощью советника, собранного в Мастере.
preview
Нейросети в трейдинге: Единый взгляд на пространство и время (Global-Local Attention)

Нейросети в трейдинге: Единый взгляд на пространство и время (Global-Local Attention)

Продолжаем работу по реализации подходов, предложенных авторами фреймворка Extralonger. На этот раз сосредоточимся на построении модуля Global-Local Spatial Attention средствами MQL5, рассматривая как его структуру, так и практическую интеграцию в общий вычислительный процесс.
preview
От новичка до эксперта: Создание анимированного советника для новостей в MQL5 (VI) — Стратегия отложенных ордеров для торговли на новостях

От новичка до эксперта: Создание анимированного советника для новостей в MQL5 (VI) — Стратегия отложенных ордеров для торговли на новостях

В настоящей статье мы сосредоточим внимание на интеграции логики исполнения ордеров, основанной на новостях, что позволит советнику действовать, а не просто информировать. Присоединяйтесь к нам, и мы рассмотрим, как реализовать автоматическое исполнение сделок на MQL5 и превратить советник «Заголовки новостей» в полностью адаптивную торговую систему. Советники предлагают значительные преимущества разработчикам алгоритмов благодаря широкому спектру поддерживаемых ими функций. До сих пор мы сосредоточились на создании инструмента для представления новостей и событий календаря, оснащенного встроенными полосами аналитики с использованием ИИ и техническими индикаторами.
preview
Нейросети в трейдинге: Единый взгляд на пространство и время (Extralonger)

Нейросети в трейдинге: Единый взгляд на пространство и время (Extralonger)

Фреймворк Extralonger демонстрирует подход к интеграции пространственных и временных факторов в единую модель, что позволяет одновременно учитывать локальные закономерности и долгосрочные циклы. Такая архитектура делает прогнозирование временных рядов более устойчивым к рыночному шуму и открывает возможность анализа данных на разных горизонтах. В статье подробно рассматривается, как эти идеи воплощаются на практике средствами OpenCL и MQL5.
preview
Нейросети в трейдинге: Модель адаптивной графовой диффузии (Окончание)

Нейросети в трейдинге: Модель адаптивной графовой диффузии (Окончание)

В статье мы завершаем работу по построению фреймворка SAGDFN средствами MQL5, подводя итоги разработки и демонстрируя результаты его практического тестирования. Объединим реализованные ранее модули в единую систему^ покажем сильные стороны подхода, отметим его уязвимости и обсудим возможные пути доработки.
preview
Разработка инструментария для анализа движения цен (Часть 6): Возврат к среднему значению

Разработка инструментария для анализа движения цен (Часть 6): Возврат к среднему значению

Хотя некоторые концепции на первый взгляд кажутся простыми, воплотить их в жизнь на практике может быть довольно сложно. В статье ниже мы рассмотрим инновационный подход к автоматизации советника, который анализирует рынок, используя стратегию возврата к среднему значению.
preview
Форекс советник на нейросети N-BEATS Network

Форекс советник на нейросети N-BEATS Network

Реализация архитектуры N-BEATS для форекс-трейдинга в MetaTrader 5 с квантильным прогнозированием и адаптивным риск-менеджментом. Архитектура адаптирована через билинейную нормализацию и специализированные функции потерь для финансовых данных. Тестирование на данных 2025 года показало неспособность генерировать прибыль, подтверждая разрыв между теоретическими достижениями и практической торговой эффективностью.
preview
Нейросети в трейдинге: Модель адаптивной графовой диффузии (модуль внимания)

Нейросети в трейдинге: Модель адаптивной графовой диффузии (модуль внимания)

В этой статье мы подробно рассмотрим практическую реализацию ключевых компонентов фреймворка SAGDFN. Покажем, как организованы разреженное внимание и выбор значимых соседей для прогнозирования временных рядов. Представленные подходы демонстрируют баланс между точностью прогнозов и эффективностью вычислений.
preview
Изучение передовых методов машинного обучения в стратегии пробоя «коридора Дарваса» (Darvas Box Breakout)

Изучение передовых методов машинного обучения в стратегии пробоя «коридора Дарваса» (Darvas Box Breakout)

Стратегия Darvas Box Breakout, созданная Николасом Дарвасом, представляет собой подход в технической торговле, который выявляет потенциальные сигналы на покупку, когда цена акций поднимается выше установленного диапазона «коридора», что указывает на сильный восходящий импульс. В этой статье мы применим эту стратегическую концепцию в качестве примера для изучения трех передовых методов машинного обучения. К ним относятся использование модели машинного обучения для генерации сигналов вместо фильтрации сделок, применение непрерывных сигналов вместо дискретных и использование для подтверждения сделок моделей, обученных на разных таймфреймах.
preview
Нейросети в трейдинге: Модель адаптивной графовой диффузии (SAGDFN)

Нейросети в трейдинге: Модель адаптивной графовой диффузии (SAGDFN)

В статье мы раскрываем архитектуру SAGDFN — современного фреймворка, способного преобразовать подход к обработке пространственно-временных данных. Он сохраняет ключевую информацию даже в сложных графах и при этом снижает вычислительные издержки.
preview
Введение в MQL5 (Часть 10): Руководство по работе со встроенными индикаторами в MQL5 для начинающих

Введение в MQL5 (Часть 10): Руководство по работе со встроенными индикаторами в MQL5 для начинающих

В этой статье описывается работа со встроенными индикаторами в MQL5, отдельное внимание уделяется созданию советника на основе индикатора RSI с использованием проектного подхода. Вы научитесь получать и использовать значения RSI, обрабатывать колебания ликвидности и улучшать визуализацию торговли с помощью графических объектов. Кроме того, в статье рассматривается еще один важный аспект. Сюда относится риск в процентах от депозита, соотношение риска и доходности, а также модификация риска на ходу для защиты прибыли.
preview
Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (Окончание)

Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (Окончание)

В статье описана практическая реализация фреймворка HimNet на базе MQL5, который готов к интеграции в автоматическую торговлю. Мы показываем, как метапараметры, адаптированные под гетерогенность, превращают модель в универсальный инструмент, способный справляться с изменчивой волатильностью.
preview
Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (Основные компоненты)

Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (Основные компоненты)

В этой статье мы подробно рассматриваем алгоритмы реализации ключевых компонентов фреймворка HimNet. Демонстрируем, как при минимальном числе обучаемых компонентов достигается высокая согласованность и управляемость всей системы. Представленная реализация отличается компактностью и прозрачностью, что облегчает её адаптацию к реальным рыночным задачам.
preview
Обучение нелинейного U-Transformer на остатках линейной авторегрессионной модели

Обучение нелинейного U-Transformer на остатках линейной авторегрессионной модели

Статья представляет инновационную гибридную систему для прогнозирования валютных курсов, которая сочетает линейную авторегрессионную модель с архитектурой U-Transformer для анализа остатков. Система автоматически переключается между источниками сигналов в зависимости от их качества и включает полноценную торговую логику с averaging/pyramiding стратегиями. Ключевое преимущество подхода заключается в том, что нейросеть обучается на остатках линейной модели, что упрощает задачу и снижает риск переобучения. Реализация выполнена полностью на MQL5 и готова к использованию в реальной торговле с автоматической адаптацией к изменяющимся рыночным условиям.
preview
Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (HimNet)

Нейросети в трейдинге: Обучение метапараметров на основе гетерогенности (HimNet)

Предлагаем познакомиться с фреймворком HimNet, который сочетает гибкость пространственно-временной адаптации с высокой вычислительной эффективностью, позволяя получать точные и стабильные прогнозы на финансовых временных рядах. В статье подробно показано, как его ключевые компоненты взаимодействуют между собой, превращая сложные алгоритмы в управляемую архитектуру.
preview
Управление рисками (Часть 2): Реализация расчета лотов в графическом интерфейсе

Управление рисками (Часть 2): Реализация расчета лотов в графическом интерфейсе

В этой статье мы рассмотрим, как улучшить и более эффективно применять концепции, изложенные в предыдущей статье, используя мощные библиотеки графических элементов управления MQL5. Я шаг за шагом проведу вас через процесс создания полностью функционального графического интерфейса, объясняя стоящий за ним план проектирования, а также назначение и принцип работы каждого используемого метода. Кроме того, в конце статьи мы протестируем созданную нами панель, чтобы убедиться в ее корректной работе и соответствии заявленным целям.
preview
Нейросети в трейдинге: Модель темпоральных запросов (Окончание)

Нейросети в трейдинге: Модель темпоральных запросов (Окончание)

Представляем вашему вниманию завершающий этап реализации и тестирования фреймворка TQNet, в котором теория встречается с реальной торговой практикой. Мы пройдём путь от исторического обучения до стресс-теста на свежих рыночных данных, оценивая устойчивость и точность модели. Итоговые результаты — это не только сухие цифры, но и наглядная демонстрация прикладной ценности предложенного подхода.
preview
Нейросети в трейдинге: Модель темпоральных запросов (TQNet)

Нейросети в трейдинге: Модель темпоральных запросов (TQNet)

Фреймворк TQNet открывает новые возможности в моделировании и прогнозировании финансовых временных рядов, сочетая модульность, гибкость и высокую производительность. В статье раскрывается возможность реализации сложных механизмом работы с глобальными корреляциями, включая продвинутые методы инициализации параметров.
preview
Нейросети в трейдинге: Декомпозиция вместо масштабирования (Окончание)

Нейросети в трейдинге: Декомпозиция вместо масштабирования (Окончание)

Предлагаем познакомиться с алгоритмом разложения временного ряда на смысловые слои и построения из них экономной модели. Мы последовательно показываем архитектуру, практическую реализацию на MQL5/OpenCL и реальные тесты на исторических рыночных данных.
preview
Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM (III) – Настройка адаптера

Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM (III) – Настройка адаптера

Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
preview
Нейросети в трейдинге: Декомпозиция вместо масштабирования — Построение модулей

Нейросети в трейдинге: Декомпозиция вместо масштабирования — Построение модулей

В этой статье продолжаем практическое знакомство с SSCNN — архитектурным решением нового поколения, способным работать с фрагментированными временными рядами. Вместо слепого масштабирования — разумная модульность, внимание к деталям и точечная нормализация. Мы шаг за шагом создаём вычислительные блоки в среде MQL5 и закладываем основу для надёжного прогнозного анализа.
preview
Файловые операции в MQL5: От базового ввода-вывода до собственного CSV-ридера

Файловые операции в MQL5: От базового ввода-вывода до собственного CSV-ридера

В статье рассматриваются основные методы обработки файлов MQL5, ведение журналов торговли, обработка CSV-файлов и интеграция внешних данных. Статья содержит как теорию, так и практическое руководство по реализации. Читатели научатся шаг за шагом создавать собственный класс импортера CSV, получив практические навыки для реальных приложений.
preview
Автоматизация торговых стратегий с помощью MQL5 (Часть 2): Система прорыва Кумо с Ichimoku и Awesome Oscillator

Автоматизация торговых стратегий с помощью MQL5 (Часть 2): Система прорыва Кумо с Ichimoku и Awesome Oscillator

В этой статье мы создаем советник, который автоматизирует стратегию прорыв Кумо (Kumo Breakout) с использованием индикатора Ichimoku Kinko Hyo и Awesome Oscillator. Мы рассмотрим инициализацию хэндлов индикаторов, обнаружение условий прорыва и автоматизацию входов и выходов из сделок. Кроме того, мы внедрим трейлинг-стопы и логику управления позициями для повышения производительности советника и его адаптивности к рыночным условиям.
preview
Нейросети в трейдинге: Декомпозиция вместо масштабирования (SSCNN)

Нейросети в трейдинге: Декомпозиция вместо масштабирования (SSCNN)

В данной статье мы начинаем знакомство с фреймворком SSCNN — современным архитектурным решением для анализа временных рядов, сочетающим в себе точность, структурированность и высокую вычислительную эффективность. Мы последовательно рассмотрим его теоретические аспекты, обратим внимание на ключевые отличия от предшественников и начнем практическую реализацию базовых компонентов в среде MQL5.
preview
Управление рисками (Часть 1): Основы построения класса по управлению рисками

Управление рисками (Часть 1): Основы построения класса по управлению рисками

В этой статье мы рассмотрим основы управления рисками в трейдинге и узнаем, как создать свои первые функции для расчета подходящего лота для сделки, а также стоп-лосса. Кроме того, мы подробно рассмотрим, как работают эти функции, объясняя каждый шаг. Наша цель — дать четкое понимание того, как применять эти концепции в автоматической торговле. В конце мы применим все на практике, создав простой скрипт с разработанным нами включаемым файлом.
preview
Нейросети в трейдинге: Распутывание структурных компонентов (Окончание)

Нейросети в трейдинге: Распутывание структурных компонентов (Окончание)

В статье подробно раскрывается SCNN-архитектура и один из вариантов её реализация средствами MQL5. Мы покажем, как декомпозиция временных рядов сочетается с нейросетевыми методами и вниманием.
preview
Квантовая нейросеть на MQL5 (Часть III): Виртуальный квантовый процессор с кубитами

Квантовая нейросеть на MQL5 (Часть III): Виртуальный квантовый процессор с кубитами

Создаем торговую систему с настоящим квантовым симулятором вместо математических аналогий. Система использует 3 виртуальных кубита, квантовые гейты и принципы суперпозиции для анализа рынков. Реализована как торговый советник для MetaTrader 5 на MQL5. Главное достижение — переход от имитации к реальным квантовым принципам обработки финансовой информации.
preview
Отправка сообщений из MQL5 в Discord, создание бота Discord-MetaTrader 5

Отправка сообщений из MQL5 в Discord, создание бота Discord-MetaTrader 5

Подобно Telegram, Discord способен получать информацию и сообщения в формате JSON, используя свои коммуникационные API. В настоящей статье мы рассмотрим, как можно использовать API Discord для отправки торговых сигналов и обновлений из MetaTrader 5 в ваше торговое сообщество Discord.
preview
Нейросети в трейдинге: Распутывание структурных компонентов (Энкодер)

Нейросети в трейдинге: Распутывание структурных компонентов (Энкодер)

Предлагаем познакомиться с продолжением реализации фреймворка SCNN, который сочетает в себе гибкость и интерпретируемость, позволяя точно выделять структурные компоненты временного ряда. В статье подробно раскрываются механизмы адаптивной нормализации и внимания, что обеспечивает устойчивость модели к изменяющимся рыночным условиям.
preview
Торгуем опционы без опционов (Часть 2): Использование в реальной торговле

Торгуем опционы без опционов (Часть 2): Использование в реальной торговле

В статье рассматриваются простые опционные стратегии и их реализация на MQL5. Пишем базовый эксперт, который будет модернизироваться и усложняться.
preview
Нейросети в трейдинге: Распутывание структурных компонентов (SCNN)

Нейросети в трейдинге: Распутывание структурных компонентов (SCNN)

Предлагаем познакомиться с инновационным фреймворком SCNN, который выводит анализ временных рядов на новый уровень за счёт чёткого разделения данных на долгосрочные, сезонные, краткосрочные и остаточные компоненты. Такой подход значительно повышает точность прогнозирования, позволяя модели адаптироваться к сложной и меняющейся рыночной динамике.
preview
Преодоление ограничений машинного обучения (Часть 1): Нехватка совместимых метрик

Преодоление ограничений машинного обучения (Часть 1): Нехватка совместимых метрик

В настоящей статье показано, что часть проблем, с которыми мы сталкиваемся, коренится в слепом следовании «лучшим практикам». Предоставляя читателю простые, основанные на реальном рынке доказательства, мы объясним ему, почему мы должны воздержаться от такого поведения и вместо этого принять передовой опыт, основанный на конкретных областях, если наше сообщество хочет получить хоть какой-то шанс на восстановление скрытого потенциала ИИ.