MQL5言語での自動売買ロボットのプログラミング例に関する記事

icon

エキスパートアドバイザーはプログラミングの「頂点」であり、それぞれの自動取引の開発者の求めたゴールです。このセクションの記事を読んで、ご自分の自動売買ロボットを作成してください。記述された手順に従うことにより、どのように自動取引システムを作成し、デバッグし、テストするかを学びます。

記事はMQL5プログラミングを教えるだけでなく、どのようにトレーディングアイデアとテクニックを導入するかを示します。どのようにトレーリングストップをプログラムするか、どのように資金管理を適用するか、どのようにインディケータ値を取得するかなど、さらに多くのことを学べます。

新しい記事を追加
最新 | ベスト
preview
スマートマネーコンセプト(BOS)とRSI指標をEAに統合する方法

スマートマネーコンセプト(BOS)とRSI指標をEAに統合する方法

市場構造に基づいた情報に基づく自動売買の意思決定を可能にするためには、スマートマネーコンセプト(Break Of Structure: BOS)とRSI指標の組み合わせが有効です。
preview
一からの取引エキスパートアドバイザーの開発(第19部):新規受注システム(II)

一からの取引エキスパートアドバイザーの開発(第19部):新規受注システム(II)

今回は、「見てわかる」タイプのグラフィカルな受注システムを開発します。なお、今回はゼロから始めるのではなく、取引する資産のチャート上にオブジェクトやイベントを追加して既存のシステムを修正します。
preview
ニューラルネットワークが簡単に(第29部):Advantage Actor-Criticアルゴリズム

ニューラルネットワークが簡単に(第29部):Advantage Actor-Criticアルゴリズム

本連載のこれまでの記事で、2つの強化学習アルゴリズムを見てきました。それぞれに長所と短所があります。このような場合ではよくあることですが、次に、2つの方法の良いところを組み合わせてアルゴリズムにすることが考え出されます。そうすれば、それぞれの欠点が補われることになります。今回は、そのような手法の1つを紹介します。
preview
自動で動くEAを作る(第12回):自動化(IV)

自動で動くEAを作る(第12回):自動化(IV)

自動化されたシステムをシンプルだと思う方はおそらく、それを作るために必要なことを十分に理解していないのでしょう。今回は、多くのエキスパートアドバイザー(EA)を死に至らしめる問題点についてお話します。この問題を解決するために、無差別に注文をトリガーすることが考えられます。
preview
一からの取引エキスパートアドバイザーの開発(第22部):新規受注システム(V)

一からの取引エキスパートアドバイザーの開発(第22部):新規受注システム(V)

今日は、新しい受注システムの開発を進めていきます。新しいシステムを導入するのはそう簡単なことではありません。プロセスが非常に複雑になるような問題がしばしば発生します。このような問題が発生したときは、一度立ち止まって、自分たちの進むべき方向を再分析しなければなりません。
preview
パターン検索への総当たり攻撃アプローチ(第VI部):循環最適化

パターン検索への総当たり攻撃アプローチ(第VI部):循環最適化

この記事では、MetaTrader 4および5の取引の自動化チェーン全体を完成するだけでなく、より興味深いことができるようになった改善の最初の部分を示します。今後、このソリューションにより、EAの作成と最適化の両方を完全に自動化し、効果的な取引構成を見つけるための人件費を最小限に抑えることができます。
preview
MetaTraderのMultibot:1つのチャートから複数のロボットを起動させる

MetaTraderのMultibot:1つのチャートから複数のロボットを起動させる

今回は、個々のチャートにロボットの各インスタンスを設定する必要がなく、1つのチャートにのみ接続された状態で複数のチャートで使用できる汎用MetaTraderロボットを作成するための簡単なテンプレートについて考えてみます。
preview
ニューラルネットワークが簡単に(第16部):クラスタリングの実用化

ニューラルネットワークが簡単に(第16部):クラスタリングの実用化

前回は、データのクラスタリングをおこなうためのクラスを作成しました。今回は、得られた結果を実際の取引に応用するためのバリエーションを紹介したいと思います。
preview
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第4回):三角移動平均 — 指標シグナル

MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第4回):三角移動平均 — 指標シグナル

この記事の多通貨エキスパートアドバイザー(EA)は、1つの銘柄チャートからのみ複数の銘柄ペアの取引(注文を出す、注文を決済する、トレーリングストップロスとトレーリングプロフィットなどで注文を管理するなど)ができるEAまたは自動売買ロボットです。今回は、多時間枠または単一時間枠の「三角移動平均」という1つの指標のみを使用します。
preview
MQL5の圏論(第10回):モノイド群

MQL5の圏論(第10回):モノイド群

MQL5における圏論の実装についての連載を続けます。ここでは、モノイド集合を正規化して、より幅広いモノイド集合とデータ型にわたって比較しやすくする手段としてモノイド群を見ていきます。
preview
古典的な戦略をPythonで再構築する(第2回):ボリンジャーバンドのブレイクアウト

古典的な戦略をPythonで再構築する(第2回):ボリンジャーバンドのブレイクアウト

本稿では、線形判別分析(LDA: Linear Discriminant Analysis)とボリンジャーバンドを統合し、戦略的市場参入シグナルの生成を目的としたカテゴリ別ゾーン予測を活用する取引戦略を考察します。
preview
ニューラルネットワークが簡単に(第38回):不一致による自己監視型探索

ニューラルネットワークが簡単に(第38回):不一致による自己監視型探索

強化学習における重要な問題のひとつは、環境探索です。前回までに、「内因性好奇心」に基づく研究方法について見てきました。今日は別のアルゴリズムを見てみましょう。不一致による探求です。
preview
ボラティリティベースの取引システムの構築と最適化の方法(チャイキンボラティリティ - CHV)

ボラティリティベースの取引システムの構築と最適化の方法(チャイキンボラティリティ - CHV)

この記事では、チャイキンボラティリティ(CHV、Chaikin Volatility)という名前の、ボラティリティに基づく後1つの指標を提供します。カスタム指標の使用方法と構築方法を確認した後、カスタム指標の構築方法を理解します。使用できるいくつかの簡単な戦略を共有し、どちらがより優れているかを理解するためにテストします。
preview
MQL5エキスパートアドバイザーに自動最適化を実装する方法

MQL5エキスパートアドバイザーに自動最適化を実装する方法

エキスパートアドバイザー(EA)のためのMQL5の自動最適化のためのステップバイステップガイド。堅牢な最適化ロジック、パラメーター選択のベストプラクティス、バックテストを通じた戦略の再構築方法について解説します。さらに、ウォークフォワード最適化などの高レベルな手法を紹介し、取引アプローチの強化を目指します。
preview
ダイナミックマルチペアEAの形成(第1回):通貨相関と逆相関

ダイナミックマルチペアEAの形成(第1回):通貨相関と逆相関

ダイナミックマルチペアEAは、相関戦略と逆相関戦略の両方を活用し、取引パフォーマンスの最適化を図ります。リアルタイムの市場データを分析することで、通貨ペア間の相関関係や逆相関関係を特定し、それらを取引に活かします。
preview
ニューラルネットワークが簡単に(第35回):ICM(Intrinsic Curiosity Module、内発的好奇心モジュール)

ニューラルネットワークが簡単に(第35回):ICM(Intrinsic Curiosity Module、内発的好奇心モジュール)

強化学習アルゴリズムの研究を続けます。これまで検討してきたすべてのアルゴリズムでは、あるシステム状態から別の状態への遷移ごとに、エージェントがそれぞれの行動を評価できるようにするための報酬方策を作成する必要がありました。しかし、この方法はかなり人工的なものです。実際には、行動と報酬の間には、ある程度の時間差があります。今回は、行動から報酬までの様々な時間の遅れを扱うことができるモデル訓練アルゴリズムに触れてみましょう。
preview
Controlsクラスを使用してインタラクティブなMQL5ダッシュボード/パネルを作成する方法(第2回):ボタンの応答性の追加

Controlsクラスを使用してインタラクティブなMQL5ダッシュボード/パネルを作成する方法(第2回):ボタンの応答性の追加

この記事では、ボタンの応答性を有効にすることで、静的なMQL5ダッシュボードパネルをインタラクティブなツールへと変換することに焦点を当てます。GUIコンポーネントの機能を自動化し、ユーザーのクリックに適切に反応する方法を探究します。この記事の最後には、ユーザーのエンゲージメントと取引体験を向上させる動的なインターフェイスを構築します。
preview
自動で動くEAを作る(第14回):自動化(VI)

自動で動くEAを作る(第14回):自動化(VI)

今回は、この連載で得た知識をすべて実践してみましょう。最終的には、100%自動化された機能的なシステムを構築します。しかしその前に、まだ最後の詳細を学ばなければなりません。
preview
ニューラルネットワークが簡単に(第15部):MQL5によるデータクラスタリング

ニューラルネットワークが簡単に(第15部):MQL5によるデータクラスタリング

クラスタリング法について引き続き検討します。今回は、最も一般的なk-meansクラスタリング手法の1つを実装するために、新しいCKmeansクラスを作成します。テスト中には約500のパターンを識別することができました。
preview
MQL5における修正グリッドヘッジEA(第1部):シンプルなヘッジEAを作る

MQL5における修正グリッドヘッジEA(第1部):シンプルなヘッジEAを作る

古典的なグリッド戦略と古典的なヘッジ戦略を混合した、より高度なグリッドヘッジEAのベースとして、シンプルなヘッジEAを作成する予定です。この記事が終わるころには、簡単なヘッジ戦略の作り方がわかり、この戦略が本当に100%儲かるかどうかについての人々の意見も知ることができるでしょう。
DoEasyライブラリでの価格(第63部): 板情報とその抽象リクエストクラス
DoEasyライブラリでの価格(第63部): 板情報とその抽象リクエストクラス

DoEasyライブラリでの価格(第63部): 板情報とその抽象リクエストクラス

本稿では、板情報を使用するための機能の開発を開始します。また、板情報抽象注文オブジェクトとその子孫のクラスも作成します。
preview
ニューラルネットワークが簡単に(第63回):Unsupervised Pretraining for Decision Transformer (PDT)

ニューラルネットワークが簡単に(第63回):Unsupervised Pretraining for Decision Transformer (PDT)

引き続き、Decision Transformer法のファミリーについて説明します。前回の記事から、これらの手法のアーキテクチャの基礎となるTransformerの訓練はかなり複雑なタスクであり、訓練のために大規模なラベル付きデータセットが必要であることにすでに気づきました。この記事では、ラベル付けされていない軌跡をモデルの予備訓練に使用するアルゴリズムについて見ていきます。
preview
Pythonを使用したEA用ディープラーニングONNXモデルの季節性フィルタと期間

Pythonを使用したEA用ディープラーニングONNXモデルの季節性フィルタと期間

Pythonでディープラーニングのモデルを作成する際、季節性から恩恵を受けることはできるのでしょうか。ONNXモデルのデータをフィルタすることでより良い結果が得られるのでしょうか。どの期間を使用するべきでしょうか。この記事では、これらすべてを取り上げます。
preview
エキスパートアドバイザー(EA)に指標を追加するための既製のテンプレート(第2部):出来高指標とビルウィリアムズの指標

エキスパートアドバイザー(EA)に指標を追加するための既製のテンプレート(第2部):出来高指標とビルウィリアムズの指標

この記事では、標準的な出来高指標とビルウィリアムズ指標のカテゴリについて見ていきます。パラメータの宣言と設定、指標の初期化と解除、EAの指標バッファからのデータとシグナルの受信など、EAで指標を使用するためのすぐに使えるテンプレートを作成します。
preview
ニューラルネットワークが簡単に(第53回):報酬の分解

ニューラルネットワークが簡単に(第53回):報酬の分解

報酬関数を正しく選択することの重要性については、すでに何度かお話ししました。報酬関数は、個々の行動に報酬またはペナルティを追加することでエージェントの望ましい行動を刺激するために使用されます。しかし、エージェントによる信号の解読については未解決のままです。この記事では、訓練されたエージェントに個々のシグナルを送信するという観点からの報酬分解について説明します。
preview
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第2回):指標シグナル:多時間枠放物線SAR指標

MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第2回):指標シグナル:多時間枠放物線SAR指標

この記事の多通貨エキスパートアドバイザー(EA)は、1つの銘柄チャートからのみ複数の銘柄ペアの取引(注文を出す、注文を決済する、トレーリングストップロスとトレーリングプロフィットなどで注文を管理するなど)ができるEAまたは自動売買ロボットです。今回は、PERIOD_M15からPERIOD_D1までの多時間枠でパラボリックSARまたはiSARという1つの指標のみを使用します。
preview
一からの取引エキスパートアドバイザーの開発(第20部):新規受注システム(III)

一からの取引エキスパートアドバイザーの開発(第20部):新規受注システム(III)

新しい受注システムの導入を継続します。このようなシステムを作るには、MQL5を使いこなすだけでなく、MetaTrader 5プラットフォームが実際にどのように機能し、どのようなリソースを提供しているかを理解することが必要です。
preview
一からの取引エキスパートアドバイザーの開発(第9部):概念的な飛躍(II)

一からの取引エキスパートアドバイザーの開発(第9部):概念的な飛躍(II)

この記事では、Chart Tradeをフローティングウィンドウに配置します。前稿では、フローティングウィンドウ内でテンプレートを使用できるようにする基本的なシステムを作成しました。
preview
多通貨エキスパートアドバイザーの開発(第1回):複数取引戦略の連携

多通貨エキスパートアドバイザーの開発(第1回):複数取引戦略の連携

取引戦略にはさまざまなものがあります。リスクを分散し、取引結果の安定性を高めるためには、複数の戦略を並行して適用することが有効かもしれません。ただし、それぞれのストラテジーが個別のエキスパートアドバイザー(EA)として実装されている場合、1つの取引口座でそれらの作業を管理することは非常に難しくなります。この問題を解決するのに合理的なのは、1つのEAで異なる取引戦略の運用を実装することです。
preview
DoEasyライブラリの時系列(第54部): 抽象基本指標の子孫クラス

DoEasyライブラリの時系列(第54部): 抽象基本指標の子孫クラス

本稿では、基本抽象指標の子孫オブジェクトのクラスの作成について検討しています。このようなオブジェクトは、指標EAを作成し、さまざまな指標と価格のデータ値統計を収集および取得する機能へのアクセスを備えています。また、プログラムで作成された各指標のプロパティとデータにアクセスできる指標オブジェクトコレクションを作成します。
preview
ニューラルネットワークの実験(第4回):テンプレート

ニューラルネットワークの実験(第4回):テンプレート

この記事では、実験と非標準的な方法を使用して収益性の高い取引システムを開発し、ニューラルネットワークがトレーダーに役立つかどうかを確認します。ニューラルネットワークを取引に活用するための自給自足ツールとしてMetaTrader 5を使用します。簡単に説明します。
preview
新しい指標と条件付きLSTMの例

新しい指標と条件付きLSTMの例

本記事は、テクニカル分析とディープラーニング(深層学習)予測を融合した自動取引用エキスパートアドバイザー(EA)の開発に焦点を当てます。
preview
Pythonを使ったEAとバックテストのための感情分析とディープラーニング

Pythonを使ったEAとバックテストのための感情分析とディープラーニング

この記事では、EAで使用するPythonによる感情分析とONNXモデルを紹介します。あるスクリプトはTensorFlowで学習させたONNXモデルをディープラーニング予測用に実行し、別のスクリプトはニュースのヘッドラインを取得し、AIを使用して感情を数値化します。
preview
モスクワ取引所(MOEX)におけるストップ注文を利用した取引所グリッド取引の自動化

モスクワ取引所(MOEX)におけるストップ注文を利用した取引所グリッド取引の自動化

本稿では、MQL5エキスパートアドバイザー(EA)に実装されたストップ指値注文に基づくグリッド取引についてモスクワ取引所(MOEX)で考察します。市場で取引する場合、最も単純な戦略の1つは、市場価格を「キャッチ」するように設計された注文のグリッドです。
preview
ビル・ウィリアムズ戦略:他の指標と予測の有無による比較

ビル・ウィリアムズ戦略:他の指標と予測の有無による比較

この記事では、ビル・ウィリアムズの有名な戦略の1つを取り上げ、それについて議論し、他の指標や予測を用いて戦略の改善を試みます。
preview
MQL5入門(第17回):トレンド反転のためのエキスパートアドバイザーの構築

MQL5入門(第17回):トレンド反転のためのエキスパートアドバイザーの構築

この記事では、トレンドラインのブレイクアウトや反転を利用したチャートパターン認識に基づいて取引をおこなうMQL5のエキスパートアドバイザー(EA)の構築方法を初心者向けに解説します。トレンドラインの値を動的に取得し、プライスアクションと比較する方法を学ぶことで、読者は上昇・下降トレンドライン、チャネル、ウェッジ、トライアングルなどのチャートパターンを識別し取引できるEAを開発できるようになります。
preview
一からの取引エキスパートアドバイザーの開発(第13部):Times & Trade (II)

一からの取引エキスパートアドバイザーの開発(第13部):Times & Trade (II)

本日は、Times & Tradeシステムの第2部である市場分析を構築します。前回の「Times & Trade (I)」稿では、市場で実行された取引を可能な限り迅速に解釈するための指標を持つことを可能にする代替のチャート編成システムについて説明しました。
preview
バックテスト結果を改善するための生のコードの最適化と調整

バックテスト結果を改善するための生のコードの最適化と調整

MQL5コードを強化するために、ロジックの最適化、計算の精緻化、実行時間の短縮をおこない、バックテストの精度を向上させましょう。パラメータの微調整、ループの最適化、非効率の排除によって、より高いパフォーマンスを実現します。
preview
DoEasyライブラリの時系列(第56部):カスタム指標オブジェクト、コレクション内指標オブジェクトからのデータ取得

DoEasyライブラリの時系列(第56部):カスタム指標オブジェクト、コレクション内指標オブジェクトからのデータ取得

本稿では、EAで使用するためのカスタム指標オブジェクトの作成について検討します。ライブラリクラスを少し改善し、EAの指標オブジェクトからデータを取得するメソッドを追加しましょう。
preview
多銘柄多期間指標の作成

多銘柄多期間指標の作成

この記事では、多銘柄、多期間の指標を作成する原則について見ていきます。また、エキスパートアドバイザー(EA)や他の指標から、このような指標のデータにアクセスする方法も紹介します。EAや指標でマルチ指標を使用する主な特徴について考察し、カスタム指標バッファを使用してそれらをプロットする方法を見ていきます。