ニューラルネットワークが簡単に(第22部):回帰モデルの教師なし学習
モデルと教師なし学習アルゴリズムの研究を続けます。今回は、回帰モデルの学習に適用した場合のオートエンコーダの特徴について提案します。
初心者からプロまでMQL5をマスターする(第2回):基本的なデータ型と変数の使用
初心者向け連載の続きです。この記事では、定数や変数を作成する方法、日付や色、その他の便利なデータを書き込む方法を見ていきます。曜日や線のスタイル(実線、点線など)を列挙する方法も学びます。変数と式はプログラミングの基本です。これらは99%のプログラムに間違いなく存在するので、理解することは非常に重要です。したがって、この記事はとてもプログラミング初心者の役に立つでしょう。必要なプログラミング知識レベル:前回の記事(冒頭のリンク参照)の範囲内で、ごく基本的なものです。
MetaTraderとGoogleスプレッドシートを使用して取引ジャーナルを作成する方法
MetaTraderとGoogleスプレッドシートを使用して取引ジャーナルを作成しましょう。HTTP POST経由で取引データを同期し、HTTPリクエストを使用して取得する方法を学習します。最終的には、取引を効果的かつ効率的に追跡するのに役立つ取引ジャーナルが手に入ります。
ボリンジャーバンドを活用したピラニア戦略に基づくMQL5エキスパートアドバイザーの作成
この記事では、ボリンジャーバンドを利用したピラニア戦略に基づいてMQL5でエキスパートアドバイザー(EA)を作成し、取引の有効性を高めます。この戦略の重要な原則、コーディングの実装、テストと最適化の方法について説明します。この知識によって、取引シナリオにEAを効果的に導入することが可能になります。
ニューラルネットワークが簡単に(第21部):変分オートエンコーダ(Variational autoencoder、VAE)
前回の記事で、オートエンコーダアルゴリズムについて学びました。他のアルゴリズム同様、このアルゴリズムには長所と短所があります。元の実装では、オートエンコーダは、訓練標本からオブジェクトを可能な限り分離するために使用されます。今回はその短所への対処法についてお話します。
ニューラルネットワークが簡単に(第18部):アソシエーションルール
この連載の続きとして、教師なし学習の手法の中で、もう1つのタイプの問題であるアソシエーションルールのマイニングについて考えてみましょう。この問題タイプは、小売業、特にスーパーマーケットで、市場の分類を分析するために最初に使用されました。今回は、このようなアルゴリズムの取引への応用についてお話します。
MQL5入門(第11回):MQL5の組み込みインジケーターの操作に関する初心者向けガイド(II)
RSI、MA、ストキャスティクスなどの複数のインジケーターを使用してMQL5でエキスパートアドバイザー(EA)を開発し、隠れた強気および弱気のダイバージェンスを検出する方法を学びます。教育目的で、詳細な例および完全にコメントされたソースコードを用いて、効果的なリスク管理を実装し、取引を自動化する方法をご紹介します。
トレーダミネーター 3:売買ロボットの台頭
記事 "Dr. Tradelove..." で Expert Advisorを作成しました。それは選択済みのトレーディングシステムのパラメータを自立的に最適化するものです。それ以上に EAにある一つのトレーディングシステムのパラメータだけを最適化するのではなく、複数あるトレーディングシステムから最良のものを選ぶExpert Advisorを作成しようと決めました。それがどうなったか見ていきます。
Connecting NeuroSolutions Neuronets
ニューロネットの作成に加え、NeuroSolutions ソフトウェアスウィートによりそれらを DLLとしてエクスポートすることが可能となります。本稿では、ニューロネット作成とDLL生成とそれを MetaTrader 5でのトレーディングのためExpert Advisor に連携する手順について述べています。
ニューラルネットワークが簡単に(第37回):スパースアテンション(Sparse Attention)
前回は、アテンションメカニズムをアーキテクチャーに用いたリレーショナルモデルについて説明しました。これらのモデルの特徴の1つは、コンピューティングリソースを集中的に利用することです。今回は、セルフアテンションブロック内部の演算回数を減らす仕組みの1つについて考えてみたいと思います。これにより、モデルの一般的なパフォーマンスが向上します。
MQL5 クックブック:オーバーフィットの影響低減とクオート不足への対処
どのようなトレーディング戦略を使っていようと、将来の収益を確保するためどのパラメータを選択すべきかという疑問は常にあるものです。本稿は同時に複数のシンボルパラメータを最適化する機能を備えたExpert Advisor 例を提供します。この方法はパラメータのオーバーフィットによる影響を軽減し、1個のシンボルからのデータが調査に十分でない場合に対処するものです。
MQL5でパラボリックSARと単純移動平均(SMA)を使用した高速取引戦略アルゴリズムを実装する
この記事では、パラボリックSARと単純移動平均(SMA)インジケーターを活用し、応答性の高い取引戦略を構築する高速取引型エキスパートアドバイザー(EA)をMQL5で開発します。インジケーターの使用方法、シグナルの生成、テストおよび最適化プロセスなど、戦略の実装について詳しく解説します。
グラフィカルインタフェースX:レンダーテーブルの新機能(ビルド9)
今日までは、ライブラリの最も高度なテーブルはCTableでした。このテーブルは、OBJ_EDIT型のエディットボックスから組み立てられており、さらなる開発は難しいです。したがって、機能の最大化においては、ライブラリ開発の現段階を考慮しても、CCanvasTable型のレンダーテーブルを開発する方が賢明です。その現バージョンはまったく使えない状態ですが、この記事から始めて状況を改善していきましょう。
MQL5でボリンジャーバンド取引戦略を実装する:ステップごとのガイド
ボリンジャーバンド売買戦略に基づくMQL5での自動売買アルゴリズム実装のためのステップごとのガイドです。トレーダーに役立つEAの作成に基づく詳細なチュートリアルです。
DoEasyライブラリでのその他のクラス(第68部): チャットウィンドウオブジェクトクラスとチャートでの指標オブジェクトクラス
本稿では、チャートオブジェクトクラスの開発を続け、利用可能な指標のリストを含むチャートウィンドウオブジェクトのリストに追加します。
MQL5でゾーン回復マーチンゲール戦略を開発する
この記事では、ゾーン回復取引アルゴリズムに基づくエキスパートアドバイザー(EA)の作成に向けて実施すべきステップについて、詳細な観点から論じています。これは、アルゴリズムトレーダーの時間を節約するシステムの自動化に役立ちます。
ニューラルネットワークの実験(第6回):価格予測のための自給自足ツールとしてのパーセプトロン
この記事では、パーセプトロンを自給自足の価格予測ツールとして使用する例として、一般的な概念と最もシンプルな既製のエキスパートアドバイザー(EA)を紹介し、その最適化の結果について説明します。
MQL5を使ったシンプルな多通貨エキスパートアドバイザーの作り方(第5回): ケルトナーチャネルのボリンジャーバンド—指標シグナル
この記事の多通貨エキスパートアドバイザー(EA)は、1つの銘柄チャートからのみ複数の銘柄ペアの取引(注文を出す、注文を決済する、トレーリングストップロスとトレーリングプロフィットなどで注文を管理するなど)ができるEAまたは自動売買ロボットです。この記事では、2つの指標、この場合はケルトナーチャネルのボリンジャーバンド®からのシグナルを使用します。
取引におけるトレーリングストップ
この記事では、取引でのトレーリングストップの使い方について説明します。トレーリングストップがどの程度有用で効果的なのか、どのように利用できるのかを評価します。トレーリングストップの効率は、価格のボラティリティと損切りレベルの選択に大きく左右されます。損切りを設定するには、さまざまなアプローチを用いることができます。
ニューラルネットワークが簡単に(第14部):データクラスタリング
前回の記事を公開してから1年以上が経過しました。アイデアを修正して新しいアプローチを開発するには、これはかなりの時間です。この新しい記事では、以前に使用された教師あり学習法から逸れようと思います。今回は、教師なし学習アルゴリズムについて説明します。特に、クラスタリングアルゴリズムの1つであるk-meansについて検討していきます。
MQL5入門(第5部):MQL5における配列関数の入門ガイド
全くの初心者のために作られた第5部では、MQL5配列の世界を探検してみましょう。この記事は、複雑なコーディングの概念を簡素化し、明快さと包括性に重点を置いています。質問が受け入れられ、知識が共有される、学習者のコミュニティに仲間入りしてください。
ニューラルネットワークが簡単に(第46回):目標条件付き強化学習(GCRL)
今回は、もうひとつの強化学習アプローチを見てみましょう。これはGCRL(goal-conditioned reinforcement learning、目標条件付き強化学習)と呼ばれます。このアプローチでは、エージェントは特定のシナリオでさまざまな目標を達成するように訓練されます。
MQL5で動的な多銘柄多期間の相対力指標(RSI)指標ダッシュボードを作成する
この記事では、MQL5を使用して、動的に複数の銘柄と時間枠にわたるRSI指標のダッシュボードを開発し、トレーダーにリアルタイムでRSI値を提供する方法を解説します。このダッシュボードには、インタラクティブなボタン、リアルタイム更新、色分けされた指標が搭載されており、トレーダーがより的確な意思決定をおこなうためのサポートをします。
ニュース取引が簡単に(第1回):データベースの作成
ニュース取引は複雑で圧倒されるかもしれませんが、この記事ではニュースデータを入手する手順を説明し、さらに、MQL5経済指標カレンダーとその特徴についても学びます。
MQL5の圏論(第6回):単射的引き戻しと全射的押し出し
圏論は、数学の多様かつ拡大を続ける分野であり、最近になってMQL5コミュニティである程度取り上げられるようになりました。この連載では、その概念と原理のいくつかを探索して考察することで、トレーダーの戦略開発におけるこの注目すべき分野の利用を促進することを目的としたオープンなライブラリを確立することを目指しています。
日足レンジブレイクアウト戦略に基づくMQL5 EAの作成
この記事では、日足レンジブレイクアウト(Daily Range Breakout)戦略に基づいてMQL5エキスパートアドバイザー(EA)を作成します。戦略の重要な概念を説明し、EAの設計図を設計し、MQL5でブレイクアウトロジックを実装します。最後に、EAの効果を最大限に引き出すためのバックテストと最適化の手法について探ります。
ニューラルネットワークが簡単に(第58回):Decision Transformer (DT)
強化学習の手法を引き続き検討します。この記事では、一連の行動を構築するパラダイムでエージェントの方策を考慮する、少し異なるアルゴリズムに焦点を当てます。
取引におけるニューラルネットワーク:時系列の区分線形表現
本記事は、これまでの公開記事とはやや異なる内容となっています。本記事では、時系列データの代替的な表現について解説します。時系列の区分的線形表現とは、小さな区間ごとに線形関数を用いて時系列データを近似する手法です。
初心者からエキスパートへ:MQL5での共同デバッグ
問題解決は、MQL5でのプログラミングのような複雑なスキルを習得するための簡潔なルーチンを確立することができます。このアプローチでは、問題解決に集中しながら、同時にスキルアップを図ることができます。問題に取り組めば取り組むほど、高度な専門知識が脳に伝達されます。個人的には、デバッグはプログラミングをマスターするための最も効果的な方法だと思っています。今日は、コードクリーニングのプロセスを紹介し、乱雑なプログラムをクリーンで機能的なものに変えるための最善のテクニックについて解説します。この記事を読んで、貴重な洞察を発見してください。
ニューラルネットワークが簡単に(第32部):分散型Q学習
この連載で前回Q学習法を紹介しました。この手法は、各行動の報酬を平均化するものです。2017年には、報酬分布関数を研究する際に、より大きな成果を示す2つの研究が発表されました。そのような技術を使って、私たちの問題を解決する可能性を考えてみましょう。
MQL5入門(第4部):構造体、クラス、時間関数をマスターする
最新記事でMQL5プログラミングの秘密を解き明かしましょう。構造体、クラス、時間関数の本質に迫り、コーディングの旅に力を与えます。初心者から経験豊富な開発者まで、個のガイドは、MQL5をマスターするための貴重な洞察を提供し、複雑な概念を簡素化します。プログラミングのスキルを高め、アルゴリズム取引の世界で一歩先を行きましょう。
ニュース取引が簡単に(第3回):取引の実施
この記事では、ニュース取引エキスパートアドバイザー(EA)で、データベースに保存されている経済指標カレンダーに基づいて取引を開始します。さらに、EAのグラフィックを改善し、今後の経済指標カレンダーイベントに関するより適切な情報を表示する予定です。
モスクワ取引所(MOEX)の指値注文を使用した自動グリッド取引
この記事では、MOEXでの作業を目的としたMetaTrader 5用のMQL5エキスパートアドバイザー(EA)の開発について考察します。EAは、MetaTrader 5ターミナルを使用して、グリッド戦略に従いながらMOEXで取引することになります。EAには、ストップロスとテイクプロフィットによるポジションの決済、および特定の市況での未決注文の削除が含まれます。
ニューラルネットワークが簡単に(第33部):分散型Q学習における分位点回帰
分散型Q学習の研究を続けます。今日は、この方法を反対側から見てみましょう。価格予測問題を解決するために、分位点回帰を利用する可能性を検討します。
グラフィカルインターフェイスX:レンダーテーブルの更新とコード最適化(ビルド10)
レンダーテーブル(CCanvasTable)に新しい機能を補完していきます。テーブルには、ホバー時の列の強調表示;、各セルにアイコンの配列を追加する機能とそれらを切り替えるメソッド、 実行時にセルテキストを設定または変更する機能などが含まれます。
MQL5入門(第3部):MQL5のコア要素をマスターする
この初心者向けの記事では、MQL5プログラミングの基本を解説します。配列、カスタム関数、プリプロセッサ、イベント処理など、すべてのコードをわかりやすく説明し、すべての行にアクセスできるようにします。すべてのステップで理解を深める独自のアプローチで、MQL5のパワーを引き出しましょう。この記事はMQL5をマスターするための基礎となるもので、各コード行の説明に重点を置き、明確で充実した学習体験を提供します。